Exemple #1
0
    def _draw_basefeatures(self):
        gmt = self._gmt
        cres = self._coastline_resolution
        rivers = self._rivers
        minarea = self._minarea

        color_wet = self.color_wet
        color_dry = self.color_dry

        if self.show_rivers and rivers:
            rivers = ["-Ir/0.25p,%s" % gmtpy.color(self.color_wet)]
        else:
            rivers = []

        fill = {}
        if not self._have_topo_land:
            fill["G"] = color_dry

        if not self._have_topo_ocean:
            fill["S"] = color_wet

        gmt.pscoast(
            D=cres,
            W="thinnest,%s" % gmtpy.color(darken(gmtpy.color_tup(color_dry))),
            A=minarea,
            *(rivers + self._jxyr),
            **fill
        )
Exemple #2
0
    def _draw_basefeatures(self):
        gmt = self._gmt
        cres = self._coastline_resolution
        rivers = self._rivers
        minarea = self._minarea

        color_wet = self.color_wet
        color_dry = self.color_dry

        if self.show_rivers and rivers:
            rivers = ['-Ir/0.25p,%s' % gmtpy.color(self.color_wet)]
        else:
            rivers = []

        fill = {}
        if not self._have_topo_land:
            fill['G'] = color_dry

        if not self._have_topo_ocean:
            fill['S'] = color_wet

        gmt.pscoast(D=cres,
                    W='thinnest,%s' %
                    gmtpy.color(darken(gmtpy.color_tup(color_dry))),
                    A=minarea,
                    *(rivers + self._jxyr),
                    **fill)
Exemple #3
0
    def test_simple(self):

        x = num.linspace(0., 2 * math.pi)
        y = num.sin(x)
        y2 = num.cos(x)

        for version in gmtpy.all_installed_gmt_versions():
            for ymode in ['off', 'symmetric', 'min-max', 'min-0', '0-max']:
                plot = gmtpy.Simple(gmtversion=version, ymode=ymode)
                plot.plot((x, y), '-W1p,%s' % gmtpy.color('skyblue2'))
                plot.plot(
                    (x, y2),
                    '-W1p,%s' % gmtpy.color(gmtpy.color_tup('scarletred2')))
                plot.text((3., 0.5, 'hello'), size=20.)
                fname = 'gmtpy_test_simple_%s.png' % ymode
                fpath = self.fpath(fname)
                plot.save(fpath)
                self.compare_with_ref(fname, 0.01, show=False)
# Load events from catalog file (generated using catalog.GlobalCMT()
# download from www.globalcmt.org)
# If no moment tensor is provided in the catalogue, the event is plotted
# as a red circle. Symbol size relative to magnitude.

events = model.load_events('deadsea_events_1976-2017.txt')
beachball_symbol = 'd'
factor_symbl_size = 5.0
for ev in events:
    mag = ev.magnitude
    if ev.moment_tensor is None:
        ev_symb = 'c' + str(mag * factor_symbl_size) + 'p'
        m.gmt.psxy(in_rows=[[ev.lon, ev.lat]],
                   S=ev_symb,
                   G=gmtpy.color('scarletred2'),
                   W='1p,black',
                   *m.jxyr)
    else:
        devi = ev.moment_tensor.deviatoric()
        beachball_size = mag * factor_symbl_size
        mt = devi.m_up_south_east()
        mt = mt / ev.moment_tensor.scalar_moment() \
            * pmt.magnitude_to_moment(5.0)
        m6 = pmt.to6(mt)
        data = (ev.lon, ev.lat, 10) + tuple(m6) + (1, 0, 0)

        if m.gmt.is_gmt5():
            kwargs = dict(M=True,
                          S='%s%g' % (beachball_symbol[0],
                                      (beachball_size) / gmtpy.cm))
Exemple #5
0
def main(args=None):
    if args is None:
        args = sys.argv[1:]

    parser = OptionParser(
        usage=usage,
        description=description)

    parser.add_option(
        '--width',
        dest='width',
        type='float',
        default=20.0,
        metavar='FLOAT',
        help='set width of output image [cm] (%default)')

    parser.add_option(
        '--height',
        dest='height',
        type='float',
        default=15.0,
        metavar='FLOAT',
        help='set height of output image [cm] (%default)')

    parser.add_option(
        '--topo-resolution-min',
        dest='topo_resolution_min',
        type='float',
        default=40.0,
        metavar='FLOAT',
        help='minimum resolution of topography [dpi] (%default)')

    parser.add_option(
        '--topo-resolution-max',
        dest='topo_resolution_max',
        type='float',
        default=200.0,
        metavar='FLOAT',
        help='maximum resolution of topography [dpi] (%default)')

    parser.add_option(
        '--no-grid',
        dest='show_grid',
        default=True,
        action='store_false',
        help='don\'t show grid lines')

    parser.add_option(
        '--no-topo',
        dest='show_topo',
        default=True,
        action='store_false',
        help='don\'t show topography')

    parser.add_option(
        '--no-cities',
        dest='show_cities',
        default=True,
        action='store_false',
        help='don\'t show cities')

    parser.add_option(
        '--no-illuminate',
        dest='illuminate',
        default=True,
        action='store_false',
        help='deactivate artificial illumination of topography')

    parser.add_option(
        '--illuminate-factor-land',
        dest='illuminate_factor_land',
        type='float',
        metavar='FLOAT',
        help='set factor for artificial illumination of land (0.5)')

    parser.add_option(
        '--illuminate-factor-ocean',
        dest='illuminate_factor_ocean',
        type='float',
        metavar='FLOAT',
        help='set factor for artificial illumination of ocean (0.25)')

    parser.add_option(
        '--theme',
        choices=['topo', 'soft'],
        default='topo',
        help='select color theme, available: topo, soft (topo)"')

    parser.add_option(
        '--download-etopo1',
        dest='download_etopo1',
        action='store_true',
        help='download full ETOPO1 topography dataset')

    parser.add_option(
        '--download-srtmgl3',
        dest='download_srtmgl3',
        action='store_true',
        help='download full SRTMGL3 topography dataset')

    parser.add_option(
        '--make-decimated-topo',
        dest='make_decimated',
        action='store_true',
        help='pre-make all decimated topography datasets')

    parser.add_option(
        '--stations',
        dest='stations_fn',
        metavar='FILENAME',
        help='load station coordinates from FILENAME')

    parser.add_option(
        '--events',
        dest='events_fn',
        metavar='FILENAME',
        help='load event coordinates from FILENAME')

    parser.add_option(
        '--debug',
        dest='debug',
        action='store_true',
        default=False,
        help='print debugging information to stderr')

    (options, args) = parser.parse_args(args)

    if options.debug:
        util.setup_logging(program_name, 'debug')
    else:
        util.setup_logging(program_name, 'info')

    if options.download_etopo1:
        import pyrocko.datasets.topo.etopo1
        pyrocko.datasets.topo.etopo1.download()

    if options.download_srtmgl3:
        import pyrocko.datasets.topo.srtmgl3
        pyrocko.datasets.topo.srtmgl3.download()

    if options.make_decimated:
        import pyrocko.datasets.topo
        pyrocko.datasets.topo.make_all_missing_decimated()

    if (options.download_etopo1 or options.download_srtmgl3 or
            options.make_decimated) and len(args) == 0:

        sys.exit(0)

    if options.theme == 'soft':
        color_kwargs = {
            'illuminate_factor_land': options.illuminate_factor_land or 0.2,
            'illuminate_factor_ocean': options.illuminate_factor_ocean or 0.15,
            'color_wet': (216, 242, 254),
            'color_dry': (238, 236, 230),
            'topo_cpt_wet': 'light_sea_uniform',
            'topo_cpt_dry': 'light_land_uniform'}
    elif options.theme == 'topo':
        color_kwargs = {
            'illuminate_factor_land': options.illuminate_factor_land or 0.5,
            'illuminate_factor_ocean': options.illuminate_factor_ocean or 0.25}

    events = []
    if options.events_fn:
        events = model.load_events(options.events_fn)

    stations = []

    if options.stations_fn:
        stations = model.load_stations(options.stations_fn)

    if not (len(args) == 4 or (
            len(args) == 1 and (events or stations))):

        parser.print_help()
        sys.exit(1)

    if len(args) == 4:
        try:
            lat = float(args[0])
            lon = float(args[1])
            radius = float(args[2])*km
        except Exception:
            parser.print_help()
            sys.exit(1)
    else:
        lats, lons = latlon_arrays(stations+events)
        lat, lon = map(float, od.geographic_midpoint(lats, lons))
        radius = float(
            num.max(od.distance_accurate50m_numpy(lat, lon, lats, lons)))
        radius *= 1.1

    m = automap.Map(
        width=options.width,
        height=options.height,
        lat=lat,
        lon=lon,
        radius=radius,
        topo_resolution_max=options.topo_resolution_max,
        topo_resolution_min=options.topo_resolution_min,
        show_topo=options.show_topo,
        show_grid=options.show_grid,
        illuminate=options.illuminate,
        **color_kwargs)

    logger.debug('map configuration:\n%s' % str(m))

    if options.show_cities:
        m.draw_cities()

    if stations:
        lats = [s.lat for s in stations]
        lons = [s.lon for s in stations]

        m.gmt.psxy(
            in_columns=(lons, lats),
            S='t8p',
            G='black',
            *m.jxyr)

        for s in stations:
            m.add_label(s.lat, s.lon, '%s' % '.'.join(
                x for x in s.nsl() if x))

    if events:
        beachball_symbol = 'mt'
        beachball_size = 20.0
        for ev in events:
            if ev.moment_tensor is None:
                m.gmt.psxy(
                    in_rows=[[ev.lon, ev.lat]],
                    S='c12p',
                    G=gmtpy.color('scarletred2'),
                    W='1p,black',
                    *m.jxyr)

            else:
                devi = ev.moment_tensor.deviatoric()
                mt = devi.m_up_south_east()
                mt = mt / ev.moment_tensor.scalar_moment() \
                    * pmt.magnitude_to_moment(5.0)
                m6 = pmt.to6(mt)
                data = (ev.lon, ev.lat, 10) + tuple(m6) + (1, 0, 0)

                if m.gmt.is_gmt5():
                    kwargs = dict(
                        M=True,
                        S='%s%g' % (
                            beachball_symbol[0], beachball_size / gmtpy.cm))
                else:
                    kwargs = dict(
                        S='%s%g' % (
                            beachball_symbol[0], beachball_size*2 / gmtpy.cm))

                m.gmt.psmeca(
                    in_rows=[data],
                    G=gmtpy.color('chocolate1'),
                    E='white',
                    W='1p,%s' % gmtpy.color('chocolate3'),
                    *m.jxyr,
                    **kwargs)

    m.save(args[-1])
Exemple #6
0

def bandpass(t):
    t.bandpass(4, 0.1, 5.)


def lowpass_highpass(t):
    t.lowpass(4, 5.)
    t.highpass(4, 0.1)


def bandpass_fft(t):
    t.bandpass_fft(0.1, 5.)


tab = []
for n in range(1, 22):
    a = timeit(lambda: bandpass(mktrace(2**n)))
    b = timeit(lambda: lowpass_highpass(mktrace(2**n)))
    c = timeit(lambda: bandpass_fft(mktrace(2**n)))
    print(2**n, a, b, c)
    tab.append((2**n, a, b, c))

a = num.array(tab).T
p = gmtpy.Simple()

for i in range(1, 4):
    p.plot((a[0], a[i]), '-W1p,%s' % gmtpy.color(i))

p.save('speed_filtering.pdf')
def main(args=None):
    if args is None:
        args = sys.argv[1:]

    parser = OptionParser(
        usage=usage,
        description=description)

    parser.add_option(
        '--width',
        dest='width',
        type='float',
        default=20.0,
        metavar='FLOAT',
        help='set width of output image [cm] (%default)')

    parser.add_option(
        '--height',
        dest='height',
        type='float',
        default=15.0,
        metavar='FLOAT',
        help='set height of output image [cm] (%default)')

    parser.add_option(
        '--topo-resolution-min',
        dest='topo_resolution_min',
        type='float',
        default=40.0,
        metavar='FLOAT',
        help='minimum resolution of topography [dpi] (%default)')

    parser.add_option(
        '--topo-resolution-max',
        dest='topo_resolution_max',
        type='float',
        default=200.0,
        metavar='FLOAT',
        help='maximum resolution of topography [dpi] (%default)')

    parser.add_option(
        '--no-grid',
        dest='show_grid',
        default=True,
        action='store_false',
        help='don\'t show grid lines')

    parser.add_option(
        '--no-topo',
        dest='show_topo',
        default=True,
        action='store_false',
        help='don\'t show topography')

    parser.add_option(
        '--no-cities',
        dest='show_cities',
        default=True,
        action='store_false',
        help='don\'t show cities')

    parser.add_option(
        '--no-illuminate',
        dest='illuminate',
        default=True,
        action='store_false',
        help='deactivate artificial illumination of topography')

    parser.add_option(
        '--illuminate-factor-land',
        dest='illuminate_factor_land',
        type='float',
        metavar='FLOAT',
        help='set factor for artificial illumination of land (0.5)')

    parser.add_option(
        '--illuminate-factor-ocean',
        dest='illuminate_factor_ocean',
        type='float',
        metavar='FLOAT',
        help='set factor for artificial illumination of ocean (0.25)')

    parser.add_option(
        '--theme',
        choices=['topo', 'soft'],
        default='topo',
        help='select color theme, available: topo, soft (topo)"')

    parser.add_option(
        '--download-etopo1',
        dest='download_etopo1',
        action='store_true',
        help='download full ETOPO1 topography dataset')

    parser.add_option(
        '--download-srtmgl3',
        dest='download_srtmgl3',
        action='store_true',
        help='download full SRTMGL3 topography dataset')

    parser.add_option(
        '--make-decimated-topo',
        dest='make_decimated',
        action='store_true',
        help='pre-make all decimated topography datasets')

    parser.add_option(
        '--stations',
        dest='stations_fn',
        metavar='FILENAME',
        help='load station coordinates from FILENAME')

    parser.add_option(
        '--events',
        dest='events_fn',
        metavar='FILENAME',
        help='load event coordinates from FILENAME')

    parser.add_option(
        '--debug',
        dest='debug',
        action='store_true',
        default=False,
        help='print debugging information to stderr')

    (options, args) = parser.parse_args(args)

    if options.debug:
        util.setup_logging(program_name, 'debug')
    else:
        util.setup_logging(program_name, 'info')

    if options.download_etopo1:
        import pyrocko.datasets.topo.etopo1
        pyrocko.datasets.topo.etopo1.download()

    if options.download_srtmgl3:
        import pyrocko.datasets.topo.srtmgl3
        pyrocko.datasets.topo.srtmgl3.download()

    if options.make_decimated:
        import pyrocko.datasets.topo
        pyrocko.datasets.topo.make_all_missing_decimated()

    if (options.download_etopo1 or options.download_srtmgl3 or
            options.make_decimated) and len(args) == 0:

        sys.exit(0)

    if options.theme == 'soft':
        color_kwargs = {
            'illuminate_factor_land': options.illuminate_factor_land or 0.2,
            'illuminate_factor_ocean': options.illuminate_factor_ocean or 0.15,
            'color_wet': (216, 242, 254),
            'color_dry': (238, 236, 230),
            'topo_cpt_wet': 'light_sea_uniform',
            'topo_cpt_dry': 'light_land_uniform'}
    elif options.theme == 'topo':
        color_kwargs = {
            'illuminate_factor_land': options.illuminate_factor_land or 0.5,
            'illuminate_factor_ocean': options.illuminate_factor_ocean or 0.25}

    events = []
    if options.events_fn:
        events = model.load_events(options.events_fn)

    stations = []

    if options.stations_fn:
        stations = model.load_stations(options.stations_fn)

    if not (len(args) == 4 or (
            len(args) == 1 and (events or stations))):

        parser.print_help()
        sys.exit(1)

    if len(args) == 4:
        try:
            lat = float(args[0])
            lon = float(args[1])
            radius = float(args[2])*km
        except Exception:
            parser.print_help()
            sys.exit(1)
    else:
        lats, lons = latlon_arrays(stations+events)
        lat, lon = map(float, od.geographic_midpoint(lats, lons))
        radius = float(
            num.max(od.distance_accurate50m_numpy(lat, lon, lats, lons)))
        radius *= 1.1

    m = automap.Map(
        width=options.width,
        height=options.height,
        lat=lat,
        lon=lon,
        radius=radius,
        topo_resolution_max=options.topo_resolution_max,
        topo_resolution_min=options.topo_resolution_min,
        show_topo=options.show_topo,
        show_grid=options.show_grid,
        illuminate=options.illuminate,
        **color_kwargs)

    logger.debug('map configuration:\n%s' % str(m))

    if options.show_cities:
        m.draw_cities()

    if stations:
        lats = [s.lat for s in stations]
        lons = [s.lon for s in stations]

        m.gmt.psxy(
            in_columns=(lons, lats),
            S='t8p',
            G='black',
            *m.jxyr)

        for s in stations:
            m.add_label(s.lat, s.lon, '%s' % '.'.join(
                x for x in s.nsl() if x))

    if events:
        beachball_symbol = 'mt'
        beachball_size = 20.0
        for ev in events:
            if ev.moment_tensor is None:
                m.gmt.psxy(
                    in_rows=[[ev.lon, ev.lat]],
                    S='c12p',
                    G=gmtpy.color('scarletred2'),
                    W='1p,black',
                    *m.jxyr)

            else:
                devi = ev.moment_tensor.deviatoric()
                mt = devi.m_up_south_east()
                mt = mt / ev.moment_tensor.scalar_moment() \
                    * pmt.magnitude_to_moment(5.0)
                m6 = pmt.to6(mt)
                data = (ev.lon, ev.lat, 10) + tuple(m6) + (1, 0, 0)

                if m.gmt.is_gmt5():
                    kwargs = dict(
                        M=True,
                        S='%s%g' % (
                            beachball_symbol[0], beachball_size / gmtpy.cm))
                else:
                    kwargs = dict(
                        S='%s%g' % (
                            beachball_symbol[0], beachball_size*2 / gmtpy.cm))

                m.gmt.psmeca(
                    in_rows=[data],
                    G=gmtpy.color('chocolate1'),
                    E='white',
                    W='1p,%s' % gmtpy.color('chocolate3'),
                    *m.jxyr,
                    **kwargs)

    m.save(args[-1])
def plot_map(stations, center, events=None, savename=None):
    from pyrocko.plot.automap import Map
    from pyrocko.example import get_example_data
    from pyrocko import model, gmtpy
    from pyrocko import moment_tensor as pmt

    gmtpy.check_have_gmt()

    # Generate the basic map
    m = Map(lat=center[0],
            lon=center[1],
            radius=150000.,
            width=30.,
            height=30.,
            show_grid=False,
            show_topo=True,
            color_dry=(238, 236, 230),
            topo_cpt_wet='light_sea_uniform',
            topo_cpt_dry='light_land_uniform',
            illuminate=True,
            illuminate_factor_ocean=0.15,
            show_rivers=False,
            show_plates=False)

    # Draw some larger cities covered by the map area
    m.draw_cities()

    # Generate with latitute, longitude and labels of the stations
    lats = [s.lat for s in stations]
    lons = [s.lon for s in stations]
    labels = ['.'.join(s.nsl()) for s in stations]

    # Stations as black triangles.
    m.gmt.psxy(in_columns=(lons, lats), S='t20p', G='black', *m.jxyr)

    # Station labels
    for i in range(len(stations)):
        m.add_label(lats[i], lons[i], labels[i])

    beachball_symbol = 'd'
    factor_symbl_size = 5.0
    if events is not None:
        for ev in events:
            mag = ev.magnitude
            if ev.moment_tensor is None:
                ev_symb = 'c' + str(mag * factor_symbl_size) + 'p'
                m.gmt.psxy(in_rows=[[ev.lon, ev.lat]],
                           S=ev_symb,
                           G=gmtpy.color('scarletred2'),
                           W='1p,black',
                           *m.jxyr)
            else:
                devi = ev.moment_tensor.deviatoric()
                beachball_size = mag * factor_symbl_size
                mt = devi.m_up_south_east()
                mt = mt / ev.moment_tensor.scalar_moment() \
                    * pmt.magnitude_to_moment(5.0)
                m6 = pmt.to6(mt)
                data = (ev.lon, ev.lat, 10) + tuple(m6) + (1, 0, 0)

                if m.gmt.is_gmt5():
                    kwargs = dict(M=True,
                                  S='%s%g' % (beachball_symbol[0],
                                              (beachball_size) / gmtpy.cm))
                else:
                    kwargs = dict(S='%s%g' % (beachball_symbol[0],
                                              (beachball_size) * 2 / gmtpy.cm))

                m.gmt.psmeca(in_rows=[data],
                             G=gmtpy.color('chocolate1'),
                             E='white',
                             W='1p,%s' % gmtpy.color('chocolate3'),
                             *m.jxyr,
                             **kwargs)
    if savename is None:
        if events is None:
            m.save('pics/stations_ridgecrest.png')
        else:
            m.save('pics/mechanisms_scedc_ridgecrest.png')
    else:
        m.save(savename)
Exemple #9
0
# Load events from catalog file (generated using catalog.GlobalCMT() to download from www.globalcmt.org)
# If no moment tensor is provided in the catalogue, the event is plotted as a red circle.
# Symbol size relative to magnitude.

events = model.load_events('deadsea_events_1976-2017.txt')
beachball_symbol = 'd'
factor_symbl_size = 5.0
for ev in events:
    mag = ev.magnitude
    if ev.moment_tensor is None:
        ev_symb = 'c'+str(mag*factor_symbl_size)+'p' 
        m.gmt.psxy(
            in_rows=[[ev.lon, ev.lat]],
            S=ev_symb,
            G=gmtpy.color('scarletred2'),
            W='1p,black',
            *m.jxyr)
    else:
        devi = ev.moment_tensor.deviatoric()
        beachball_size = mag*factor_symbl_size
        mt = devi.m_up_south_east()
        mt = mt / ev.moment_tensor.scalar_moment() \
            * pmt.magnitude_to_moment(5.0)
        m6 = pmt.to6(mt)
        data = (ev.lon, ev.lat, 10) + tuple(m6) + (1, 0, 0)#

        if m.gmt.is_gmt5():
            kwargs = dict(
                M=True,
                S='%s%g' % (beachball_symbol[0], (beachball_size) / gmtpy.cm))

def bandpass(t):
    t.bandpass(4, 0.1, 5.)


def lowpass_highpass(t):
    t.lowpass(4,  5.)
    t.highpass(4, 0.1)


def bandpass_fft(t):
    t.bandpass_fft(0.1, 5.)


tab = []
for n in range(1, 22):
    a = timeit(lambda: bandpass(mktrace(2**n)))
    b = timeit(lambda: lowpass_highpass(mktrace(2**n)))
    c = timeit(lambda: bandpass_fft(mktrace(2**n)))
    print(2**n, a, b, c)
    tab.append((2**n, a, b, c))

a = num.array(tab).T
p = gmtpy.Simple()

for i in range(1, 4):
    p.plot((a[0], a[i]), '-W1p,%s' % gmtpy.color(i))

p.save('speed_filtering.pdf')