def __init__(self, name, rdm): """ Fixed model This is a parameter-free model that simply predicts a fixed RDM It takes rdm object, a vector or a matrix as input to define the RDM Args: Name(String): Model name rdm(pyrsa.rdm.RDMs): rdms in one object """ Model.__init__(self, name) if isinstance(rdm, RDMs): self.rdm_obj = rdm self.rdm = np.mean(rdm.get_vectors(), axis=0) self.n_cond = rdm.n_cond elif rdm.ndim == 1: # User passed a vector self.rdm_obj = RDMs(np.array([rdm])) self.n_cond = (1 + np.sqrt(1 + 8 * rdm.size)) / 2 if self.n_cond % 1 != 0: raise NameError( "RDM vector needs to have size of ncond*(ncond-1)/2") self.rdm = rdm else: # User passed a matrix self.rdm_obj = RDMs(np.array([rdm])) self.rdm = batch_to_vectors(np.array([rdm]))[0] self.n_cond = self.rdm_obj.n_cond self.n_param = 0 self.default_fitter = fit_mock self.rdm_obj.pattern_descriptors['index'] = np.arange(self.n_cond)
def __init__(self, dissimilarities, dissimilarity_measure=None, descriptors=None, rdm_descriptors=None, pattern_descriptors=None): self.dissimilarities, self.n_rdm, self.n_cond = \ batch_to_vectors(dissimilarities) if descriptors is None: self.descriptors = {} else: self.descriptors = descriptors if rdm_descriptors is None: self.rdm_descriptors = {} else: check_descriptor_length_error(rdm_descriptors, 'rdm_descriptors', self.n_rdm) self.rdm_descriptors = rdm_descriptors if pattern_descriptors is None: self.pattern_descriptors = {} else: check_descriptor_length_error(pattern_descriptors, 'pattern_descriptors', self.n_cond) self.pattern_descriptors = pattern_descriptors if 'index' not in self.pattern_descriptors.keys(): self.pattern_descriptors['index'] = np.arange(self.n_cond) if 'index' not in self.rdm_descriptors.keys(): self.rdm_descriptors['index'] = np.arange(self.n_rdm) self.dissimilarity_measure = dissimilarity_measure
def test_batch_to_vectors(self): from pyrsa.util.rdm_utils import batch_to_vectors dis = np.zeros((8,5,5)) y, n_rdm, n_cond = batch_to_vectors(dis) assert y.shape[0] == 8 assert y.shape[1] == 10 assert n_rdm == 8 assert n_cond == 5
def reorder(self, new_order): """Reorder the patterns according to the index in new_order Args: new_order (numpy.ndarray): new order of patterns, vector of length equal to the number of patterns """ matrices = self.get_matrices() matrices = matrices[(slice(None),) + np.ix_(new_order, new_order)] self.dissimilarities = batch_to_vectors(matrices)[0] for dname, descriptors in self.pattern_descriptors.items(): self.pattern_descriptors[dname] = descriptors[new_order]
def __init__(self, dissimilarities, dissimilarity_measure=None, descriptors={}, pattern_descriptors={}): self.dissimilarities, self.n_rdm, self.n_cond = \ batch_to_vectors(dissimilarities) if descriptors is None: self.descriptors = {} else: self.descriptors = descriptors self.dissimilarity_measure = dissimilarity_measure self.pattern_descriptors = pattern_descriptors
def __init__(self, name, rdm): Model.__init__(self, name) if isinstance(rdm, RDMs): self.rdm_obj = rdm self.rdm = rdm.get_vectors() elif rdm.ndim == 2: # User supplied vectors self.rdm_obj = RDMs(rdm) self.n_cond = (1 + np.sqrt(1 + 8 * rdm.shape[1])) / 2 if self.n_cond % 1 != 0: raise NameError( "RDM vector needs to have size of ncond*(ncond-1)/2") self.rdm = rdm else: # User passed matrixes self.rdm_obj = RDMs(rdm) self.rdm = batch_to_vectors(rdm) self.n_param = self.rdm_obj.n_rdm self.n_rdm = self.rdm_obj.n_rdm self.default_fitter = fit_interpolate
def plot_model_comparison(result, sort=False, colors=None, alpha=0.01, test_pair_comparisons=True, multiple_pair_testing='fdr', test_above_0=True, test_below_noise_ceil=True, error_bars='sem'): """ Plots the results of RSA inference on a set of models as a bar graph with one bar for each model indicating its predictive performance. The function also shows the noise ceiling whose upper edge is an upper bound on the performance the true model could achieve (given noise and inter- subject variability) and whose lower edge is an estimate of a lower bound on the performance of the true model. In addition, all pairwise inferential model comparisons are shown in the upper part of the figure. The only mandatory input is a "result" object containing model evaluations for bootstrap samples and crossvalidation folds. These are used here to construct confidence intervals and perform the significance tests. Args (All strings case insensitive): result (pyrsa.inference.result.Result): model evaluation result sort (Boolean or string): False (default): plot bars in the order passed 'descend[ing]': plot bars in descending order of model performance 'ascend[ing]': plot bars in ascending order of model performance colors (list of lists, numpy array, matplotlib colormap): None (default): default blue for all bars single color: list or numpy array of 3 or 4 values (RGB, RGBA) specifying the color for all bars multiple colors: list of lists or numpy array (number of colors by 3 or 4 channels -- RGB, RGBA). If the number of colors matches the number of models, each color is used for the bar corresponding to one model (in the order of the models as passed). If the number of colors does not match the number of models, the list is linearly interpolated to assign a color to each model (in the order of the models as passed). For example, two colors will become a gradation, unless there are exactly two model. Instead of a list of lists or numpy array, a matplotlib colormap object may also be passed (e.g. colors = cm.coolwarm). alpha (float): significance threshold (p threshold or FDR q threshold) test_pair_comparisons (Boolean or string): False or None: do not plot pairwise model comparison results True (default): plot pairwise model comparison results using default settings 'arrows': plot results in arrows style, indicating pairs of sets between which all differences are significant 'nili': plot results as Nili bars (Nili et al. 2014), indicating each significant difference by a horizontal line (or each nonsignificant difference if the string contains a '2', e.g. 'nili2') 'golan': plot results as Golan wings (Golan et al. 2020), with one wing (graphical element) indicating all dominance relationships for one model. 'cliques': plot results as cliques of insignificant differences multiple_pair_testing (Boolean or string): False or 'none': do not adjust for multiple testing for the pairwise model comparisons 'FDR' or 'fdr' (default): control the false-discorvery rate at q = alpha 'FWER',' fwer', or 'Bonferroni': control the familywise error rate using the Bonferroni method test_above_0 (Boolean or string): False or None: do not plot results of statistical comparison of each model performance against 0 True (default): plot results of statistical comparison of each model performance against 0 using default settings ('dewdrops') 'dewdrops': place circular "dewdrops" at the baseline to indicate models whose performance is significantly greater than 0 'icicles': place triangular "icicles" at the baseline to indicate models whose performance is significantly greater than 0 Tests are one-sided, use the global alpha threshold and are automatically Bonferroni-corrected for the number of models tested. test_below_noise_ceil (Boolean or string): False or None: do not plot results of statistical comparison of each model performance against the lower-bound estimate of the noise ceiling True (default): plot results of statistical comparison of each model performance against the lower-bound estimate of the noise ceiling using default settings ('dewdrops') 'dewdrops': use circular "dewdrops" at the lower bound of the noise ceiling to indicate models whose performance is significantly below the lower-bound estimate of the noise ceiling 'icicles': use triangular "icicles" at the lower bound of the noise ceiling to indicate models whose performance is significantly below the lower-bound estimate of the noise ceiling Tests are one-sided, use the global alpha threshold and are automatically Bonferroni-corrected for the number of models tested. error_bars (Boolean or string): False or None: do not plot error bars True (default) or 'SEM': plot the standard error of the mean 'CI': plot 95%-confidence intervals (exluding 2.5% on each side) 'CI[x]': plot x%-confidence intervals (exluding 2.5% on each side) Confidence intervals are based on the bootstrap procedure, reflecting variability of the estimate across subjects and/or experimental conditions. Returns: --- """ # Prepare and sort data evaluations = result.evaluations models = result.models noise_ceiling = result.noise_ceiling method = result.method while len(evaluations.shape) > 2: evaluations = np.nanmean(evaluations, axis=-1) if noise_ceiling.ndim > 1: noise_ceiling = noise_ceiling[:, ~np.isnan(evaluations[:, 0])] evaluations = evaluations[~np.isnan(evaluations[:, 0])] perf = np.mean(evaluations, axis=0) n_bootstraps, n_models = evaluations.shape if sort is True: sort = 'descending' # descending by default if sort is True elif sort is False: sort = 'unsorted' if sort != 'unsorted': # 'descending' or 'ascending' idx = np.argsort(perf) if 'descend' in sort.lower(): idx = np.flip(idx) perf = perf[idx] evaluations = evaluations[:, idx] models = [models[i] for i in idx] if not ('descend' in sort.lower() or 'ascend' in sort.lower()): raise Exception('plot_model_comparison: Argument ' + 'sort is incorrectly defined as ' + sort + '.') # Prepare axes for bars and pairwise comparisons fs, fs2 = 18, 14 # axis label font sizes l, b, w, h = 0.15, 0.15, 0.8, 0.8 fig = plt.figure(figsize=(12.5, 10)) if test_pair_comparisons is True: test_pair_comparisons = 'arrows' if test_pair_comparisons: if test_pair_comparisons.lower() in ['arrows', 'cliques']: h_pair_tests = 0.25 elif 'golan' in test_pair_comparisons.lower(): h_pair_tests = 0.3 elif 'nili' in test_pair_comparisons.lower(): h_pair_tests = 0.4 else: raise Exception( 'plot_model_comparison: Argument ' + 'test_pair_comparisons is incorrectly defined as ' + test_pair_comparisons + '.') ax = plt.axes((l, b, w, h * (1 - h_pair_tests))) axbar = plt.axes( (l, b + h * (1 - h_pair_tests), w, h * h_pair_tests * 0.7)) else: ax = plt.axes((l, b, w, h)) # Define the model colors if colors is None: # no color passed... colors = [0, 0.4, 0.9, 1] # use default blue elif isinstance(colors, cm.colors.LinearSegmentedColormap): cmap = cm.get_cmap(colors) colors = cmap(np.linspace(0, 1, 100))[np.newaxis, :, :3].squeeze() colors = np.array([np.array(col) for col in colors]) if len(colors.shape) == 1: # one color passed... n_col, n_chan = 1, colors.shape[0] colors.shape = (n_col, n_chan) else: # multiple colors passed... n_col, n_chan = colors.shape if n_col == n_models: # one color passed for each model... cols2 = colors else: # number of colors passed does not match number of models... # interpolate colors to define a color for each model cols2 = np.empty((n_models, n_chan)) for c in range(n_chan): cols2[:, c] = np.interp(np.array(range(n_models)), np.array(range(n_col)) / n_col * n_models, colors[:, c]) if sort != 'unsorted': colors = cols2[idx, :] else: colors = cols2 if colors.shape[1] == 3: colors = np.concatenate((colors, np.ones((colors.shape[0], 1))), axis=1) # Plot bars and error bars ax.bar(np.arange(evaluations.shape[1]), perf, color=colors) if error_bars is True: error_bars = 'sem' if error_bars.lower() == 'sem': errorbar_low = np.std(evaluations, axis=0) errorbar_high = np.std(evaluations, axis=0) elif error_bars[0:2].lower() == 'ci': if len(error_bars) == 2: CI_percent = 95 else: CI_percent = int(error_bars[2:]) prop_cut = (1 - CI_percent / 100) / 2 framed_evals = np.concatenate( (np.tile(np.array((-np.inf, np.inf)).reshape(2, 1), (1, n_models)), evaluations), axis=0) errorbar_low = -(np.quantile(framed_evals, prop_cut, axis=0) - perf) errorbar_high = (np.quantile(framed_evals, 1 - prop_cut, axis=0) - perf) limits = np.concatenate((errorbar_low, errorbar_high)) if np.isnan(limits).any() or (abs(limits) == np.inf).any(): raise Exception( 'plot_model_comparison: Too few bootstrap samples for the ' + 'requested confidence interval: ' + error_bars + '.') elif error_bars: raise Exception('plot_model_comparison: Argument ' + 'error_bars is incorrectly defined as ' + error_bars + '.') if error_bars: ax.errorbar(np.arange(evaluations.shape[1]), perf, yerr=[errorbar_low, errorbar_high], fmt='none', ecolor='k', capsize=0, linewidth=3) # Test whether model performance exceeds 0 (one sided) if test_above_0 is True: test_above_0 = 'dewdrops' if test_above_0: p = ((evaluations < 0).sum(axis=0) + 1) / n_bootstraps model_significant = p < alpha / n_models half_sym_size = 9 if test_above_0.lower() == 'dewdrops': halfmoonup = Path.wedge(0, 180) ax.plot(model_significant.nonzero()[0], np.tile(0, model_significant.sum()), 'w', marker=halfmoonup, markersize=half_sym_size, linewidth=0) elif test_above_0.lower() == 'icicles': ax.plot(model_significant.nonzero()[0], np.tile(0, model_significant.sum()), 'w', marker=10, markersize=half_sym_size, linewidth=0) else: raise Exception('plot_model_comparison: Argument test_above_0' + ' is incorrectly defined as ' + test_above_0 + '.') # Plot noise ceiling noise_ceil_col = [0.5, 0.5, 0.5, 0.2] if noise_ceiling is not None: noise_lower = np.nanmean(noise_ceiling[0]) noise_upper = np.nanmean(noise_ceiling[1]) noiserect = patches.Rectangle((-0.5, noise_lower), len(perf), noise_upper - noise_lower, linewidth=0, facecolor=noise_ceil_col, zorder=1e6) ax.add_patch(noiserect) # Test whether model performance is below the noise ceiling's lower bound # (one sided) if test_below_noise_ceil is True: test_below_noise_ceil = 'dewdrops' if test_below_noise_ceil: if len(noise_ceiling.shape) > 1: noise_lower_bs = noise_ceiling[0] noise_lower_bs.shape = (noise_lower_bs.shape[0], 1) else: noise_lower_bs = noise_ceiling[0].reshape(1, 1) diffs = noise_lower_bs - evaluations # positive if below lower bound p = ((diffs < 0).sum(axis=0) + 1) / n_bootstraps model_below_lower_bound = p < alpha / n_models if test_below_noise_ceil.lower() == 'dewdrops': halfmoondown = Path.wedge(180, 360) ax.plot(model_below_lower_bound.nonzero()[0], np.tile(noise_lower + 0.0000, model_below_lower_bound.sum()), color='none', marker=halfmoondown, markersize=half_sym_size, markerfacecolor=noise_ceil_col, markeredgecolor='none', linewidth=0) elif test_below_noise_ceil.lower() == 'icicles': ax.plot(model_below_lower_bound.nonzero()[0], np.tile(noise_lower + 0.0007, model_below_lower_bound.sum()), color='none', marker=11, markersize=half_sym_size, markerfacecolor=noise_ceil_col, markeredgecolor='none', linewidth=0) else: raise Exception( 'plot_model_comparison: Argument ' + 'test_below_noise_ceil is incorrectly defined as ' + test_below_noise_ceil + '.') # Pairwise model comparisons if test_pair_comparisons: model_comp_descr = 'Model comparisons: two-tailed, ' p_values = pair_tests(evaluations) n_tests = int((n_models**2 - n_models) / 2) if multiple_pair_testing is None: multiple_pair_testing = 'uncorrected' if multiple_pair_testing.lower() == 'bonferroni' or \ multiple_pair_testing.lower() == 'fwer': significant = p_values < (alpha / n_tests) model_comp_descr = (model_comp_descr + 'p < {:<.5g}'.format(alpha) + ', Bonferroni-corrected for ' + str(n_tests) + ' model-pair comparisons') elif multiple_pair_testing.lower() == 'fdr': ps = batch_to_vectors(np.array([p_values]))[0][0] ps = np.sort(ps) criterion = alpha * (np.arange(ps.shape[0]) + 1) / ps.shape[0] k_ok = ps < criterion if np.any(k_ok): k_max = np.max(np.where(ps < criterion)[0]) crit = criterion[k_max] else: crit = 0 significant = p_values < crit model_comp_descr = (model_comp_descr + 'FDR q < {:<.5g}'.format(alpha) + ' (' + str(n_tests) + ' model-pair comparisons)') else: if 'uncorrected' not in multiple_pair_testing.lower(): raise Exception( 'plot_model_comparison: Argument ' + 'multiple_pair_testing is incorrectly defined as ' + multiple_pair_testing + '.') significant = p_values < alpha model_comp_descr = (model_comp_descr + 'p < {:<.5g}'.format(alpha) + ', uncorrected (' + str(n_tests) + ' model-pair comparisons)') if result.cv_method in [ 'bootstrap_rdm', 'bootstrap_pattern', 'bootstrap_crossval' ]: model_comp_descr = model_comp_descr + \ '\nInference by bootstrap resampling ' + \ '({:<,.0f}'.format(n_bootstraps) + ' bootstrap samples) of ' if result.cv_method == 'bootstrap_rdm': model_comp_descr = model_comp_descr + 'subjects. ' elif result.cv_method == 'bootstrap_pattern': model_comp_descr = model_comp_descr + 'experimental conditions. ' elif result.cv_method in ['bootstrap', 'bootstrap_crossval']: model_comp_descr = model_comp_descr + \ 'subjects and experimental conditions. ' model_comp_descr = model_comp_descr + 'Error bars indicate the' if error_bars[0:2].lower() == 'ci': model_comp_descr = (model_comp_descr + ' ' + str(CI_percent) + '% confidence interval.') elif error_bars.lower() == 'sem': model_comp_descr = (model_comp_descr + ' standard error of the mean.') if test_above_0 or test_below_noise_ceil: model_comp_descr = ( model_comp_descr + '\nOne-sided comparisons of each model performance ') if test_above_0: model_comp_descr = model_comp_descr + 'against 0 ' if test_above_0 and test_below_noise_ceil: model_comp_descr = model_comp_descr + 'and ' if test_below_noise_ceil: model_comp_descr = ( model_comp_descr + 'against the lower-bound estimate of the noise ceiling ') if test_above_0 or test_below_noise_ceil: model_comp_descr = (model_comp_descr + 'are Bonferroni-corrected for ' + str(n_models) + ' models.') fig.suptitle(model_comp_descr, fontsize=fs2 / 2) axbar.set_xlim(ax.get_xlim()) digits = [d for d in list(test_pair_comparisons) if d.isdigit()] if len(digits) > 0: v = int(digits[0]) else: v = None if 'nili' in test_pair_comparisons.lower(): if v: plot_nili_bars(axbar, significant, version=v) else: plot_nili_bars(axbar, significant) elif 'golan' in test_pair_comparisons.lower(): if v: plot_golan_wings(axbar, significant, perf, sort, colors, version=v) else: plot_golan_wings(axbar, significant, perf, sort, colors) elif 'arrows' in test_pair_comparisons.lower(): plot_arrows(axbar, significant) elif 'cliques' in test_pair_comparisons.lower(): plot_cliques(axbar, significant) # Floating axes ytoptick = np.floor(min(1, noise_upper) * 10) / 10 ax.set_yticks(np.arange(0, ytoptick + 1e-6, step=0.1)) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xticks(np.arange(n_models)) ax.spines['left'].set_bounds(0, ytoptick) ax.spines['bottom'].set_bounds(0, n_models - 1) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.rc('ytick', labelsize=fs2) # Axis labels ylabel_fig_x, ysublabel_fig_x = 0.07, 0.095 trans = transforms.blended_transform_factory(fig.transFigure, ax.get_yaxis_transform()) ax.text(ylabel_fig_x, ytoptick / 2, 'RDM prediction accuracy', horizontalalignment='center', verticalalignment='center', rotation='vertical', fontsize=fs, fontweight='bold', transform=trans) if method.lower() == 'cosine': ax.set_ylabel('[across-subject mean of cosine similarity]', fontsize=fs2) if method.lower() in ['cosine_cov', 'whitened cosine']: ax.set_ylabel('[across-subject mean of whitened-RDM cosine]', fontsize=fs2) elif method.lower() == 'spearman': ax.set_ylabel('[across-subject mean of Spearman r rank correlation]', fontsize=fs2) elif method.lower() in ['corr', 'pearson']: ax.text(ysublabel_fig_x, ytoptick / 2, '[across-subject mean of Pearson r correlation]', horizontalalignment='center', verticalalignment='center', rotation='vertical', fontsize=fs2, fontweight='normal', transform=trans) # ax.set_ylabel('[across-subject mean of Pearson r correlation]', # fontsize=fs2) elif method.lower() in ['whitened pearson', 'corr_cov']: ax.set_ylabel('[across-subject mean of whitened-RDM Pearson r ' + 'correlation]', fontsize=fs2) elif method.lower() in ['kendall', 'tau-b']: ax.set_ylabel('[across-subject mean of Kendall tau-b rank ' + 'correlation]', fontsize=fs2) elif method.lower() == 'tau-a': ax.set_ylabel('[across-subject mean of ' + 'Kendall tau-a rank correlation]', fontsize=fs2) if models is not None: ax.set_xticklabels([m.name for m in models], fontsize=fs2, rotation=45)