def test_adaptive_bandwidth(self): w = d.Kernel(self.points, fixed=False) np.testing.assert_allclose(sorted(w[self.known_wi3].values()), sorted(self.known_w3), rtol=RTOL) bws = w.bandwidth.tolist() np.testing.assert_allclose(bws, self.known_w3_abws, rtol=RTOL) w = d.Kernel(self.points, fixed=False, function='gaussian') for k, v in w[self.known_wi4].items(): np.testing.assert_allclose((k, v), (k, self.known_w4[k]), rtol=RTOL) bws = w.bandwidth.tolist() np.testing.assert_allclose(bws, self.known_w4_abws, rtol=RTOL)
def test_fixed_bandwidth(self): w = d.Kernel(self.points, bandwidth=15.0) for k, v in w[self.known_wi1].items(): np.testing.assert_allclose((k, v), (k, self.known_w1[k])) np.testing.assert_allclose(np.ones((w.n, 1)) * 15, w.bandwidth) w = d.Kernel(self.points, bandwidth=self.known_w2_bws) for k, v in w[self.known_wi2].items(): np.testing.assert_allclose((k, v), (k, self.known_w2[k]), rtol=RTOL) for i in range(w.n): np.testing.assert_allclose(w.bandwidth[i], self.known_w2_bws[i], rtol=RTOL)
def test_dense(self): w_rook = ps.weights.Rook.from_shapefile( ps.examples.get_path('lattice10x10.shp')) polys = ps.open(ps.examples.get_path('lattice10x10.shp')) centroids = [p.centroid for p in polys] w_db = d.DistanceBand(centroids, 1, build_sp=False) for k in w_db.id_order: np.testing.assert_equal(w_db[k], w_rook[k])
def test_integers(self): """ see issue #126 """ grid_integers = [ tuple(map(int, poly.vertices[0])) for poly in self.grid_f ] self.grid_f.seek(0) grid_dbw = d.DistanceBand(grid_integers, 1) for k, v in grid_dbw: self.assertEquals(v, self.grid_rook_w[k])
def test_arcdist(self): arc = ps.cg.sphere.arcdist kdt = KDTree(self.arc_points, distance_metric='Arc', radius=ps.cg.sphere.RADIUS_EARTH_KM) npoints = self.arc_points.shape[0] full = np.matrix([[ arc(self.arc_points[i], self.arc_points[j]) for j in xrange(npoints) ] for i in xrange(npoints)]) maxdist = full.max() w = d.DistanceBand(kdt, maxdist, binary=False, alpha=1.0) np.testing.assert_allclose(w.sparse.todense(), full)
def jacquez(s_coords, t_coords, k, permutations=99): """ Jacquez k nearest neighbors test for spatio-temporal interaction. [3]_ Parameters ---------- s_coords : array nx2 spatial coordinates t_coords : array nx1 temporal coordinates k : int the number of nearest neighbors to be searched permutations : int the number of permutations used to establish pseudo- significance (default is 99) Returns ------- jacquez_result : dictionary contains the statistic (stat) for the test and the associated p-value (pvalue) stat : float value of the Jacquez k nearest neighbors test for the dataset pvalue : float p-value associated with the statistic (normally distributed with k-1 df) References ---------- .. [3] G. Jacquez. 1996. A k nearest neighbour test for space-time interaction. Statistics in Medicine, 15(18):1935-1949. Examples -------- >>> import numpy as np >>> import pysal Read in the example data and create an instance of SpaceTimeEvents. >>> path = pysal.examples.get_path("burkitt") >>> events = SpaceTimeEvents(path,'T') The Jacquez test counts the number of events that are k nearest neighbors in both time and space. The following runs the Jacquez test on the example data and reports the resulting statistic. In this case, there are 13 instances where events are nearest neighbors in both space and time. # turning off as kdtree changes from scipy < 0.12 return 13 #>>> np.random.seed(100) #>>> result = jacquez(events.space, events.t ,k=3,permutations=99) #>>> print result['stat'] #12 The significance of this can be assessed by calling the p- value from the results dictionary, as shown below. Again, no space-time interaction is observed. #>>> result['pvalue'] < 0.01 #False """ time = t_coords space = s_coords n = len(time) # calculate the nearest neighbors in space and time separately knnt = Distance.knnW(time, k) knns = Distance.knnW(space, k) nnt = knnt.neighbors nns = knns.neighbors knn_sum = 0 # determine which events are nearest neighbors in both space and time for i in range(n): t_neighbors = nnt[i] s_neighbors = nns[i] check = set(t_neighbors) inter = check.intersection(s_neighbors) count = len(inter) knn_sum += count stat = knn_sum # return the results (if no inference) if not permutations: return stat # loop for generating a random distribution to assess significance dist = [] for p in range(permutations): j = 0 trand = np.random.permutation(time) knnt = Distance.knnW(trand, k) nnt = knnt.neighbors for i in range(n): t_neighbors = nnt[i] s_neighbors = nns[i] check = set(t_neighbors) inter = check.intersection(s_neighbors) count = len(inter) j += count dist.append(j) # establish the pseudo significance of the observed statistic distribution = np.array(dist) greater = np.ma.masked_greater_equal(distribution, stat) count = np.ma.count_masked(greater) pvalue = (count + 1.0) / (permutations + 1.0) # report the results jacquez_result = {'stat': stat, 'pvalue': pvalue} return jacquez_result
def test_init(self): w = d.KNN(self.euclidean_kdt, k=2) self.assertEqual(w.neighbors[0], [1, 3])
def test_init(self): w = d.Kernel(self.euclidean_kdt) for k, v in w[self.known_wi0].items(): np.testing.assert_allclose(v, self.known_w0[k], rtol=RTOL)
def test_init(self): w = d.DistanceBand(self.grid_kdt, 1) for k, v in w: self.assertEquals(v, self.grid_rook_w[k])
def test_reweight(self): w = d.KNN(self.points, k=2) new_point = [(21, 21)] wnew = w.reweight(k=4, p=1, new_data=new_point, inplace=False) self.assertEqual(wnew[0], {1: 1.0, 3: 1.0, 4: 1.0, 6: 1.0})