Exemple #1
0
    def load(self, path, image_field="image", meta_field="metadata"):
        """ A method that load the data and associated metadata.

        Parameters
        ----------
        path: str
            the path to the data to be loaded.
        image_field: str, default 'image'
            the name of the data field that contains the image array.
        image_field: str, default 'metadata'
            the name of the data field that contains the image metadata.

        Return
        ------
        image: Image
            the loaded image.
        """
        data = loadmat(path)
        _array = data[image_field]
        _meta = {"path": path}
        if meta_field in data:
            _meta.update(data[meta_field])
        return Image(data_type="scalar",
                     metadata=_meta,
                     data=_array)
Exemple #2
0
    def load(self, path):
        """ A method that load the image data and associated metadata.

        Parameters
        ----------
        path: str
            the path to the image to be loaded.

        Returns
        -------
        image: Image
            the loaded image.
        """

        cube = np.load(path)
        return Image(data_type="scalar", data=cube)
Exemple #3
0
    def load(self, path):
        """ A method that load the image data and associated metadata.

        Parameters
        ----------
        path: str
            the path to the image to be loaded.

        Return
        ------
        image: Image
            the loaded image.
        """
        _image = nibabel.load(path)
        return Image(spacing=_image.header.get_zooms(),
                     data_type="scalar",
                     metadata={"path": path},
                     data=_image.get_data())
Exemple #4
0
    def load(self, path):
        """ A method that load the image data and associated metadata.

        Parameters
        ----------
        path: str
            the path to the image to be loaded.

        Return
        ------
        image: Image
            the loaded image.
        """
        hdulist = pyfits.open(path)
        if len(hdulist) != 1:
            raise Exception("Only one HDU object supported yet. Can't "
                            "read '{0}'.".format(path))
        cube = hdulist[0].data
        header = dict(hdulist[0].header.items())
        header["path"] = path
        hdulist.close()
        return Image(data_type="scalar", metadata=header, data=cube)