def read_init_info(inps): # Time Series Info ts_file0 = inps.timeseries_file[0] atr = readfile.read_attribute(ts_file0) inps.key = atr['FILE_TYPE'] if inps.key == 'timeseries': obj = timeseries(ts_file0) elif inps.key == 'giantTimeseries': obj = giantTimeseries(ts_file0) elif inps.key == 'HDFEOS': obj = HDFEOS(ts_file0) else: raise ValueError('input file is {}, not timeseries.'.format(inps.key)) obj.open() if not inps.file_label: inps.file_label = [ str(i) for i in list(range(len(inps.timeseries_file))) ] # default mask file if not inps.mask_file and 'masked' not in ts_file0: dir_name = os.path.dirname(ts_file0) if 'Y_FIRST' in atr.keys(): inps.mask_file = os.path.join(dir_name, 'geo_maskTempCoh.h5') else: inps.mask_file = os.path.join(dir_name, 'maskTempCoh.h5') if not os.path.isfile(inps.mask_file): inps.mask_file = None # date info inps.date_list = obj.dateList if inps.start_date: inps.date_list = [ i for i in inps.date_list if int(i) >= int(inps.start_date) ] if inps.end_date: inps.date_list = [ i for i in inps.date_list if int(i) <= int(inps.end_date) ] inps.num_date = len(inps.date_list) inps.dates, inps.yearList = ptime.date_list2vector(inps.date_list) (inps.ex_date_list, inps.ex_dates, inps.ex_flag) = read_exclude_date(inps.ex_date_list, inps.date_list) # initial display index if obj.metadata['REF_DATE'] in inps.date_list: inps.ref_idx = inps.date_list.index(obj.metadata['REF_DATE']) else: inps.ref_idx = 0 if inps.ref_date: inps.ref_idx = inps.date_list.index(inps.ref_date) if not inps.init_idx: if inps.ref_idx < inps.num_date / 2.: inps.init_idx = -3 else: inps.init_idx = 3 # Display Unit (inps.disp_unit, inps.unit_fac) = pp.scale_data2disp_unit(metadata=atr, disp_unit=inps.disp_unit)[1:3] # Read Error List inps.error_ts = None inps.ex_error_ts = None if inps.error_file: error_fileContent = np.loadtxt(inps.error_file, dtype=bytes).astype(str) inps.error_ts = error_fileContent[:, 1].astype( np.float) * inps.unit_fac if inps.ex_date_list: e_ts = inps.error_ts[:] inps.ex_error_ts = e_ts[inps.ex_flag == 0] inps.error_ts = e_ts[inps.ex_flag == 1] # Zero displacement for 1st acquisition if inps.zero_first: inps.zero_idx = min(0, np.min(np.where(inps.ex_flag)[0])) # default lookup table file if not inps.lookup_file: inps.lookup_file = ut.get_lookup_file('./INPUTS/geometryRadar.h5') inps.coord = ut.coordinate(atr, inps.lookup_file) # size and lalo info inps.pix_box, inps.geo_box = subset.subset_input_dict2box(vars(inps), atr) inps.pix_box = inps.coord.check_box_within_data_coverage(inps.pix_box) inps.geo_box = inps.coord.box_pixel2geo(inps.pix_box) # Out message data_box = (0, 0, obj.width, obj.length) print('data coverage in y/x: ' + str(data_box)) print('subset coverage in y/x: ' + str(inps.pix_box)) print('data coverage in lat/lon: ' + str(inps.coord.box_pixel2geo(data_box))) print('subset coverage in lat/lon: ' + str(inps.geo_box)) print( '------------------------------------------------------------------------' ) # reference pixel if not inps.ref_lalo and 'REF_LAT' in atr.keys(): inps.ref_lalo = (float(atr['REF_LAT']), float(atr['REF_LON'])) if inps.ref_lalo: if inps.ref_lalo[1] > 180.: inps.ref_lalo[1] -= 360. inps.ref_yx = inps.coord.geo2radar(inps.ref_lalo[0], inps.ref_lalo[1], print_msg=False)[0:2] if not inps.ref_yx: inps.ref_yx = [int(atr['REF_Y']), int(atr['REF_X'])] # Initial Pixel Coord if inps.lalo: inps.yx = inps.coord.geo2radar(inps.lalo[0], inps.lalo[1], print_msg=False)[0:2] try: inps.lalo = inps.coord.radar2geo(inps.yx[0], inps.yx[1], print_msg=False)[0:2] except: inps.lalo = None # Flip up-down / left-right if inps.auto_flip: inps.flip_lr, inps.flip_ud = pp.auto_flip_direction(atr) # display unit ans wrap # if wrap_step == 2*np.pi (default value), set disp_unit_v = radian; # otherwise set disp_unit_v = disp_unit inps.disp_unit_v = inps.disp_unit if inps.wrap: inps.range2phase = -4. * np.pi / float(atr['WAVELENGTH']) if 'cm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 100. elif 'mm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 1000. elif 'm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 1. else: raise ValueError('un-recognized display unit: {}'.format( inps.disp_unit)) if (inps.wrap_range[1] - inps.wrap_range[0]) == 2 * np.pi: inps.disp_unit_v = 'radian' inps.vlim = inps.wrap_range inps.cbar_label = 'Displacement [{}]'.format(inps.disp_unit_v) return inps, atr
def read_timeseries_data(inps): """Read data of time-series files Parameters: inps : Namespace of input arguments Returns: ts_data : list of 3D np.array in size of (num_date, length, width) mask : 2D np.array in size of (length, width) inps : Namespace of input arguments """ # read list of 3D time-series ts_data = [] for fname in inps.timeseries_file: print('reading timeseries from file {} ...'.format(fname)) data, atr = readfile.read(fname, datasetName=inps.date_list, box=inps.pix_box) try: ref_phase = data[:, inps.ref_yx[0] - inps.pix_box[1], inps.ref_yx[1] - inps.pix_box[0]] data -= np.tile(ref_phase.reshape(-1, 1, 1), (1, data.shape[-2], data.shape[-1])) print('reference to pixel {}'.format(inps.ref_yx)) except: pass data -= np.tile(data[inps.ref_idx, :, :], (inps.num_date, 1, 1)) # Display Unit (data, inps.disp_unit, inps.unit_fac) = pp.scale_data2disp_unit(data, metadata=atr, disp_unit=inps.disp_unit) ts_data.append(data) # Mask file: input mask file + non-zero ts pixels mask = np.ones(ts_data[0].shape[-2:], np.bool_) msk = pp.read_mask(inps.timeseries_file[0], mask_file=inps.mask_file, datasetName='displacement', box=inps.pix_box)[0] mask[msk == 0.] = False del msk ts_stack = np.sum(ts_data[0], axis=0) mask[ts_stack == 0.] = False mask[np.isnan(ts_stack)] = False del ts_stack #print('masking data') #ts_mask = np.tile(mask, (inps.num_date, 1, 1)) #for i in range(len(ts_data)): # ts_data[i][ts_mask == 0] = np.nan # try: # ts_data[i][:, inps.ref_yx[0], inps.ref_yx[1]] = 0. # keep value on reference pixel # except: # pass #del ts_mask # default vlim inps.dlim = [np.nanmin(ts_data[0]), np.nanmax(ts_data[0])] ts_data_mli = multilook_data(np.squeeze(ts_data[0]), 10, 10) if not inps.vlim: inps.vlim = [ np.nanmin(ts_data_mli[inps.ex_flag != 0]), np.nanmax(ts_data_mli[inps.ex_flag != 0]) ] print('data range: {} {}'.format(inps.dlim, inps.disp_unit)) print('display range: {} {}'.format(inps.vlim, inps.disp_unit)) # default ylim num_file = len(inps.timeseries_file) if not inps.ylim: ts_data_mli = multilook_data(np.squeeze(ts_data[-1]), 10, 10) if inps.zero_first: ts_data_mli -= np.tile(ts_data_mli[inps.zero_idx, :, :], (inps.num_date, 1, 1)) ymin, ymax = (np.nanmin(ts_data_mli[inps.ex_flag != 0]), np.nanmax(ts_data_mli[inps.ex_flag != 0])) ybuffer = (ymax - ymin) * 0.05 inps.ylim = [ymin - ybuffer, ymax + ybuffer] if inps.offset: inps.ylim[1] += inps.offset * (num_file - 1) del ts_data_mli return ts_data, mask, inps
def plot_transect(ax, inps): print('plot profiles') # disp_unit/scale if not inps.disp_unit: inps.disp_unit = inps.atrList[0]['UNIT'] inps.disp_unit, inps.disp_scale = pp.scale_data2disp_unit( data=None, metadata=inps.atrList[0], disp_unit=inps.disp_unit)[1:3] # Plot 2.1 - Input Files value_min = 0 value_max = 0 for i in range(len(inps.file)): # Profile Color based on Asc/Desc direction if inps.atrList[i]['ORBIT_DIRECTION'][0].upper() == 'A': p_color = 'crimson' else: p_color = 'royalblue' # Plot distance = inps.transectList[i][:, 0] / 1000.0 # km value = inps.transectList[ i][:, 1] * inps.disp_scale - inps.disp_offset * i ax.plot(distance, value, '.', color=p_color, markersize=inps.marker_size) # Y Stat value_min = np.nanmin([value_min, np.nanmin(value)]) value_max = np.nanmax([value_max, np.nanmax(value)]) # Y axis if not inps.disp_min: inps.disp_min = np.floor(value_min - (value_max - value_min) * 1.2 / len(inps.file)) if not inps.disp_max: inps.disp_max = np.ceil(value_max) ax.set_ylim(inps.disp_min, inps.disp_max) ax.set_ylabel('Mean LOS Velocity ({})'.format(inps.disp_unit), fontsize=inps.font_size) # X axis ax.set_xlabel('Distance (km)', fontsize=inps.font_size) ax.tick_params(which='both', direction='out', labelsize=inps.font_size) # Plot 2.2 - DEM if inps.dem: ax2 = ax.twinx() distance = inps.demTransectList[0][:, 0] / 1000.0 # km value = inps.demTransectList[0][:, 1] / 1000.0 # km ax2.fill_between(distance, 0, value, facecolor='gray') # Y axis - display DEM in the bottom value_min = np.nanmin(value) value_max = np.nanmax(value) if not inps.dem_disp_min: inps.dem_disp_min = np.floor(value_min * 2.0) / 2.0 if not inps.dem_disp_max: inps.dem_disp_max = np.ceil((value_max + (value_max - value_min) * (len(inps.file) + 0.0)) * 2.0) / 2.0 ax2.set_ylim(inps.dem_disp_min, inps.dem_disp_max) # Show lower part of yaxis #dem_tick = ax2.yaxis.get_majorticklocs() #dem_tick = dem_tick[:len(dem_tick)/2] # ax2.set_yticks(dem_tick) ax2.set_ylabel('Elevation (km)', fontsize=inps.font_size) ax2.tick_params(which='both', direction='out', labelsize=inps.font_size) # X axis - Shared distanceMax = np.nanmax(inps.transectList[0][:, 0] / 1000.0) # in km plt.xlim(0, distanceMax) plt.tight_layout() return