Exemple #1
0
 def test_bin_data_type(self):
     """Test failure when median 1D is given non array-like bins
     """
     avg.median2D(self.testInst, ['0', 'd', '24', 'c'],
                  self.test_label,
                  self.test_data,
                  auto_bin=False)
Exemple #2
0
 def test_bin_data_type(self):
     """Test failure when a non array-like is given to median2D
     """
     avg.median2D(self.testInst, ['1', 'a', '23', '10'],
                  'longitude', ['0', 'd', '24', 'c'],
                  'mlt', ['dummy1', 'dummy2', 'dummy3'],
                  auto_bin=False)
Exemple #3
0
 def test_bin_data_depth(self):
     """Test failure when an array-like of length 1 is given to median2D
     """
     avg.median2D(self.testInst,
                  1,
                  'longitude',
                  24,
                  'mlt', ['dummy1', 'dummy2', 'dummy3'],
                  auto_bin=False)
Exemple #4
0
 def test_nonmonotonic_bins(self):
     """Test 2D median failure when provided with a non-monotonic bins
     """
     avg.median2D(self.testInst,
                  np.array([0., 300., 100.]),
                  'longitude',
                  np.array([0., 24., 13.]),
                  'mlt', ['dummy1', 'dummy2', 'dummy3'],
                  auto_bin=False)
Exemple #5
0
    def test_constellation_median2D(self):
        """ Test constellation implementation of 2D median"""
        for i in self.testC.instruments:
            i.bounds = self.bounds
        self.testI.bounds = self.bounds
        resultsC = avg.median2D(self.testC, [0., 360., 24], 'longitude',
                                [0., 24., 24], 'mlt',
                                ['dummy1', 'dummy2', 'dummy3'])
        resultsI = avg.median2D(self.testI, [0., 360., 24], 'longitude',
                                [0., 24., 24], 'mlt',
                                ['dummy1', 'dummy2', 'dummy3'])
        medC1 = resultsC['dummy1']['median']
        medI1 = resultsI['dummy1']['median']
        medC2 = resultsC['dummy2']['median']
        medI2 = resultsI['dummy2']['median']
        medC3 = resultsC['dummy3']['median']
        medI3 = resultsI['dummy3']['median']

        assert np.array_equal(medC1, medI1)
        assert np.array_equal(medC2, medI2)
        assert np.array_equal(medC3, medI3)
Exemple #6
0
    def test_basic_seasonal_median2D(self):
        """ Test basic seasonal 2D median"""
        results = avg.median2D(self.testInst, [0., 360., 24], 'longitude',
                               [0., 24., 24], 'mlt', [self.dname])

        # iterate over all
        # no variation in the median, all values should be the same
        test_vals = np.arange(50) * 1.2
        for i, row in enumerate(results[self.dname]['median']):
            for j, item in enumerate(row):
                assert np.all(item == test_vals)

        for i, row in enumerate(results[self.dname]['avg_abs_dev']):
            for j, item in enumerate(row):
                assert np.all(item == 0)
Exemple #7
0
    def test_basic_seasonal_2Dmedian(self):
        """ Test the basic seasonal 2D median"""

        results = avg.median2D(self.testInst, [0., 360., 24], 'longitude',
                               [0., 24., 24], 'mlt', [self.dname])

        # iterate over all
        # no variation in the median, all values should be the same
        for i, row in enumerate(results[self.dname]['median']):
            for j, item in enumerate(row):
                assert np.all(item['density'] == self.test_vals)
                assert np.all(item['fraction'] == self.test_fracs)

        for i, row in enumerate(results[self.dname]['avg_abs_dev']):
            for j, item in enumerate(row):
                assert np.all(item['density'] == 0)
                assert np.all(item['fraction'] == 0)
Exemple #8
0
    def test_seasonal_average_uneven_bins(self):
        """ Test seasonal 2D median with uneven bins"""
        results = avg.median2D(self.testInst,
                               np.linspace(0., 360., 25),
                               'longitude',
                               np.linspace(0., 24., 25),
                               'mlt', ['dummy1', 'dummy2', 'dummy3'],
                               auto_bin=False)
        dummy_val = results['dummy1']['median']
        dummy_dev = results['dummy1']['avg_abs_dev']

        dummy2_val = results['dummy2']['median']
        dummy2_dev = results['dummy2']['avg_abs_dev']

        dummy3_val = results['dummy3']['median']
        dummy3_dev = results['dummy3']['avg_abs_dev']

        dummy_x = results['dummy1']['bin_x']
        dummy_y = results['dummy1']['bin_y']

        # iterate over all y rows
        # value should be equal to integer value of mlt
        # no variation in the median, all values should be the same
        check = []
        for i, y in enumerate(dummy_y[:-1]):
            assert np.all(dummy_val[i, :] == y.astype(int))
            assert np.all(dummy_dev[i, :] == 0)

        for i, x in enumerate(dummy_x[:-1]):
            assert np.all(dummy2_val[:, i] == x / 15.0)
            assert np.all(dummy2_dev[:, i] == 0)

        for i, x in enumerate(dummy_x[:-1]):
            check.append(
                np.all(dummy3_val[:, i] == x / 15.0 * 1000.0 + dummy_y[:-1]))
            check.append(np.all(dummy3_dev[:, i] == 0))

        # holds here because there are 32 days, no data is discarded,
        # each day holds same amount of data
        assert (self.testInst.data['dummy1'].size * 3 == sum(
            [sum(i) for i in results['dummy1']['count']]))

        assert np.all(check)
Exemple #9
0
    def test_2D_median(self):
        """ Test a 2D median calculation with a constellation"""
        for i in self.testC.instruments:
            i.bounds = self.bounds

        results = avg.median2D(self.testC, [0., 360., 24], 'longitude',
                               [0., 24, 24], 'slt', ['uts'])
        dummy_val = results['uts']['median']
        dummy_dev = results['uts']['avg_abs_dev']

        dummy_y = results['uts']['bin_y']

        # iterate over all y rows
        # value should be equal to integer value of mlt
        # no variation in the median, all values should be the same
        check = []
        for i, y in enumerate(dummy_y[:-1]):
            check.append(np.all(dummy_val[i, :] == y.astype(int)))
            check.append(np.all(dummy_dev[i, :] == 0))
Exemple #10
0
    def test_heterogenous_constellation_median2D(self):
        """ Test the seasonal 2D median of a heterogeneous constellation """
        for inst in self.testC:
            inst.bounds = self.bounds
        results = avg.median2D(self.testC, [0., 360., 24], 'longitude',
                               [0., 24., 24], 'mlt',
                               ['dummy1', 'dummy2', 'dummy3'])
        dummy_val = results['dummy1']['median']
        dummy_dev = results['dummy1']['avg_abs_dev']

        dummy2_val = results['dummy2']['median']
        dummy2_dev = results['dummy2']['avg_abs_dev']

        dummy3_val = results['dummy3']['median']
        dummy3_dev = results['dummy3']['avg_abs_dev']

        dummy_x = results['dummy1']['bin_x']
        dummy_y = results['dummy1']['bin_y']

        # iterate over all y rows
        # value should be equal to integer value of mlt
        # no variation in the median, all values should be the same
        check = []
        for i, y in enumerate(dummy_y[:-1]):
            check.append(np.all(dummy_val[i, :] == y.astype(int)))
            check.append(np.all(dummy_dev[i, :] == 0))

        for i, x in enumerate(dummy_x[:-1]):
            check.append(np.all(dummy2_val[:, i] == x / 15.0))
            check.append(np.all(dummy2_dev[:, i] == 0))

        for i, x in enumerate(dummy_x[:-1]):
            check.append(
                np.all(dummy3_val[:, i] == x / 15.0 * 1000.0 + dummy_y[:-1]))
            check.append(np.all(dummy3_dev[:, i] == 0))

        assert np.all(check)