def laplace_coo( self): # Compute matrix of Laplace brakets for the whole molecule from pyscf.nao.m_overlap_coo import overlap_coo from pyscf.nao.m_laplace_am import laplace_am return overlap_coo(self, funct=laplace_am)
for i, dref in enumerate(dipcoo): dref = dref.toarray() dprd = np.einsum('p,pab->ab', mom1[:, i], vpab) xyz2err.append([ abs(dprd - dref).sum() / dref.size, np.amax(abs(dref - dprd)) ]) return xyz2err # # # if __name__ == '__main__': from pyscf.nao import prod_basis_c, nao from pyscf.nao.m_overlap_coo import overlap_coo from pyscf import gto import numpy as np mol = gto.M(atom='O 0 0 0; H 0 0 0.5; H 0 0.5 0', basis='ccpvdz') # coordinates in Angstrom! sv = nao(gto=mol) print(sv.atom2s) s_ref = overlap_coo(sv).todense() pb = prod_basis_c() pb.init_prod_basis_pp_batch(sv) mom0, mom1 = pb.comp_moments() pab2v = pb.get_ac_vertex_array() s_chk = einsum('pab,p->ab', pab2v, mom0) print(abs(s_chk - s_ref).sum() / s_chk.size, abs(s_chk - s_ref).max())
def overlap_coo(self, **kvargs): # Compute overlap matrix for the molecule from pyscf.nao.m_overlap_coo import overlap_coo return overlap_coo(self, **kvargs)
def pb_ae(self, sv, tol_loc=1e-5, tol_biloc=1e-6, ac_rcut_ratio=1.0): """ It should work with GTOs as well.""" from pyscf.nao import coulomb_am, get_atom2bas_s, conv_yzx2xyz_c, prod_log_c, ls_part_centers, comp_coulomb_den from pyscf.nao.m_overlap_coo import overlap_coo from pyscf.nao.m_prod_biloc import prod_biloc_c from scipy.sparse import csr_matrix from pyscf import gto self.sv = sv self.tol_loc = tol_loc self.tol_biloc = tol_biloc self.ac_rcut_ratio = ac_rcut_ratio self.ac_rcut = ac_rcut_ratio * max(sv.ao_log.sp2rcut) self.prod_log = prod_log_c().init_prod_log_dp( sv.ao_log, tol_loc) # local basis (for each specie) self.hkernel_csr = csr_matrix( overlap_coo(sv, self.prod_log, coulomb_am)) # compute local part of Coulomb interaction self.c2s = zeros( (sv.natm + 1), dtype=int64 ) # global product Center (atom) -> start in case of atom-centered basis for gc, sp in enumerate(sv.atom2sp): self.c2s[gc + 1] = self.c2s[gc] + self.prod_log.sp2norbs[sp] # c2s = self.c2s # What is the meaning of this copy ?? ... This is a pointer to self.c2s self.bp2info = [ ] # going to be some information including indices of atoms, list of contributing centres, conversion coefficients for ia1, n1 in enumerate(sv.atom2s[1:] - sv.atom2s[0:-1]): for ia2, n2 in enumerate(sv.atom2s[ia1 + 2:] - sv.atom2s[ia1 + 1:-1]): ia2 += ia1 + 1 mol2 = gto.Mole(atom=[sv._atom[ia1], sv._atom[ia2]], basis=sv.basis, unit='bohr').build() bs = get_atom2bas_s(mol2._bas) ss = (bs[0], bs[1], bs[1], bs[2], bs[0], bs[1], bs[1], bs[2]) eri = mol2.intor('cint2e_sph', shls_slice=ss).reshape(n1, n2, n1, n2) eri = conv_yzx2xyz_c(mol2).conv_yzx2xyz_4d(eri, 'pyscf2nao', ss).reshape( n1 * n2, n1 * n2) ee, xx = np.linalg.eigh( eri ) # This the simplest way. TODO: diag in each m-channel separately mu2d = [domi for domi, eva in enumerate(ee) if eva > tol_biloc ] # The choice of important linear combinations is here nprod = len(mu2d) if nprod < 1: continue # Skip the rest of operations in case there is no large linear combinations. # add new vertex vrtx = zeros([nprod, n1, n2]) for p, d in enumerate(mu2d): vrtx[p, :, :] = xx[:, d].reshape(n1, n2) #print(ia1,ia2,nprod,abs(einsum('pab,qab->pq', lambdx, lambdx).reshape(nprod,nprod)-np.identity(nprod)).sum()) lc2c = ls_part_centers( sv, ia1, ia2, ac_rcut_ratio) # list of participating centers lc2s = zeros( (len(lc2c) + 1), dtype=int64 ) # local product center -> start for the current bilocal pair for lc, c in enumerate(lc2c): lc2s[lc + 1] = lc2s[lc] + self.prod_log.sp2norbs[sv.atom2sp[c]] npbp = lc2s[ -1] # size of the functions which will contribute to the given pair ia1,ia2 hkernel_bp = np.zeros( (npbp, npbp)) # this is local kernel for the current bilocal pair for lc1, c1 in enumerate(lc2c): for lc2, c2 in enumerate(lc2c): for i1 in range(lc2s[lc1 + 1] - lc2s[lc1]): for i2 in range(lc2s[lc2 + 1] - lc2s[lc2]): hkernel_bp[i1 + lc2s[lc1], i2 + lc2s[ lc2]] = self.hkernel_csr[i1 + c2s[c1], i2 + c2s[ c2]] # element-by-element construction here inv_hk = np.linalg.inv(hkernel_bp) llp = np.zeros((npbp, nprod)) for c, s, f in zip(lc2c, lc2s, lc2s[1:]): n3 = sv.atom2s[c + 1] - sv.atom2s[c] lcd = self.prod_log.sp2lambda[sv.atom2sp[c]] mol3 = gto.Mole( atom=[sv._atom[ia1], sv._atom[ia2], sv._atom[c]], basis=sv.basis, unit='bohr', spin=1).build() bs = get_atom2bas_s(mol3._bas) ss = (bs[2], bs[3], bs[2], bs[3], bs[0], bs[1], bs[1], bs[2]) tci_ao = mol3.intor('cint2e_sph', shls_slice=ss).reshape(n3, n3, n1, n2) tci_ao = conv_yzx2xyz_c(mol3).conv_yzx2xyz_4d( tci_ao, 'pyscf2nao', ss) lp = einsum('lcd,cdp->lp', lcd, einsum('cdab,pab->cdp', tci_ao, vrtx)) llp[s:f, :] = lp cc = einsum('ab,bc->ac', inv_hk, llp) pbiloc = prod_biloc_c(atoms=array([ia1, ia2]), vrtx=vrtx, cc2a=lc2c, cc2s=lc2s, cc=cc.T) self.bp2info.append(pbiloc) #print(ia1, ia2, len(mu2d), lc2c, hkernel_bp.sum(), inv_hk.sum()) self.dpc2s, self.dpc2t, self.dpc2sp = self.init_c2s_domiprod( ) # dominant product's counting return self
""" Our standard minimal check """ dipcoo = self.sv.dipole_coo(**kw) mom0,mom1 = self.comp_moments() vpab = self.get_ac_vertex_array() xyz2err = [] for i,dref in enumerate(dipcoo): dref = dref.toarray() dprd = np.einsum('p,pab->ab', mom1[:,i],vpab) xyz2err.append([abs(dprd-dref).sum()/dref.size, np.amax(abs(dref-dprd))]) return xyz2err # # # if __name__=='__main__': from pyscf.nao import prod_basis_c, nao from pyscf.nao.m_overlap_coo import overlap_coo from pyscf import gto import numpy as np mol = gto.M(atom='O 0 0 0; H 0 0 0.5; H 0 0.5 0', basis='ccpvdz') # coordinates in Angstrom! sv = nao(gto=mol) print(sv.atom2s) s_ref = overlap_coo(sv).todense() pb = prod_basis_c() pb.init_prod_basis_pp_batch(sv) mom0,mom1=pb.comp_moments() pab2v = pb.get_ac_vertex_array() s_chk = einsum('pab,p->ab', pab2v,mom0) print(abs(s_chk-s_ref).sum()/s_chk.size, abs(s_chk-s_ref).max())
def laplace_coo(self): # Compute matrix of Laplace brakets for the whole molecule from pyscf.nao.m_overlap_coo import overlap_coo from pyscf.nao.m_laplace_am import laplace_am return overlap_coo(self, funct=laplace_am)
def overlap_coo(self, **kw): # Compute overlap matrix for the molecule from pyscf.nao.m_overlap_coo import overlap_coo return overlap_coo(self, **kw)
def pb_ae(self, sv, tol_loc=1e-5, tol_biloc=1e-6, ac_rcut_ratio=1.0): """ It should work with GTOs as well.""" from pyscf.nao import coulomb_am, get_atom2bas_s, conv_yzx2xyz_c, prod_log_c, ls_part_centers, comp_coulomb_den from pyscf.nao.m_overlap_coo import overlap_coo from pyscf.nao.m_prod_biloc import prod_biloc_c from scipy.sparse import csr_matrix from pyscf import gto self.sv = sv self.tol_loc = tol_loc self.tol_biloc = tol_biloc self.ac_rcut_ratio = ac_rcut_ratio self.ac_rcut = ac_rcut_ratio*max(sv.ao_log.sp2rcut) self.prod_log = prod_log_c().init_prod_log_dp(sv.ao_log, tol_loc) # local basis (for each specie) self.hkernel_csr = csr_matrix(overlap_coo(sv, self.prod_log, coulomb_am)) # compute local part of Coulomb interaction self.c2s = zeros((sv.natm+1), dtype=int64) # global product Center (atom) -> start in case of atom-centered basis for gc,sp in enumerate(sv.atom2sp): self.c2s[gc+1]=self.c2s[gc]+self.prod_log.sp2norbs[sp] # c2s = self.c2s # What is the meaning of this copy ?? ... This is a pointer to self.c2s self.bp2info = [] # going to be some information including indices of atoms, list of contributing centres, conversion coefficients for ia1,n1 in enumerate(sv.atom2s[1:]-sv.atom2s[0:-1]): for ia2,n2 in enumerate(sv.atom2s[ia1+2:]-sv.atom2s[ia1+1:-1]): ia2 += ia1+1 mol2 = gto.Mole(atom=[sv._atom[ia1], sv._atom[ia2]], basis=sv.basis, unit='bohr').build() bs = get_atom2bas_s(mol2._bas) ss = (bs[0],bs[1], bs[1],bs[2], bs[0],bs[1], bs[1],bs[2]) eri = mol2.intor('cint2e_sph', shls_slice=ss).reshape(n1,n2,n1,n2) eri = conv_yzx2xyz_c(mol2).conv_yzx2xyz_4d(eri, 'pyscf2nao', ss).reshape(n1*n2,n1*n2) ee,xx = np.linalg.eigh(eri) # This the simplest way. TODO: diag in each m-channel separately mu2d = [domi for domi,eva in enumerate(ee) if eva>tol_biloc] # The choice of important linear combinations is here nprod=len(mu2d) if nprod<1: continue # Skip the rest of operations in case there is no large linear combinations. # add new vertex vrtx = zeros([nprod,n1,n2]) for p,d in enumerate(mu2d): vrtx[p,:,:] = xx[:,d].reshape(n1,n2) #print(ia1,ia2,nprod,abs(einsum('pab,qab->pq', lambdx, lambdx).reshape(nprod,nprod)-np.identity(nprod)).sum()) lc2c = ls_part_centers(sv, ia1, ia2, ac_rcut_ratio) # list of participating centers lc2s = zeros((len(lc2c)+1), dtype=int64) # local product center -> start for the current bilocal pair for lc,c in enumerate(lc2c): lc2s[lc+1]=lc2s[lc]+self.prod_log.sp2norbs[sv.atom2sp[c]] npbp = lc2s[-1] # size of the functions which will contribute to the given pair ia1,ia2 hkernel_bp = np.zeros((npbp, npbp)) # this is local kernel for the current bilocal pair for lc1,c1 in enumerate(lc2c): for lc2,c2 in enumerate(lc2c): for i1 in range(lc2s[lc1+1]-lc2s[lc1]): for i2 in range(lc2s[lc2+1]-lc2s[lc2]): hkernel_bp[i1+lc2s[lc1],i2+lc2s[lc2]] = self.hkernel_csr[i1+c2s[c1],i2+c2s[c2]] # element-by-element construction here inv_hk = np.linalg.inv(hkernel_bp) llp = np.zeros((npbp, nprod)) for c,s,f in zip(lc2c,lc2s,lc2s[1:]): n3 = sv.atom2s[c+1]-sv.atom2s[c] lcd = self.prod_log.sp2lambda[sv.atom2sp[c]] mol3 = gto.Mole(atom=[sv._atom[ia1], sv._atom[ia2], sv._atom[c]], basis=sv.basis, unit='bohr', spin=1).build() bs = get_atom2bas_s(mol3._bas) ss = (bs[2],bs[3], bs[2],bs[3], bs[0],bs[1], bs[1],bs[2]) tci_ao = mol3.intor('cint2e_sph', shls_slice=ss).reshape(n3,n3,n1,n2) tci_ao = conv_yzx2xyz_c(mol3).conv_yzx2xyz_4d(tci_ao, 'pyscf2nao', ss) lp = einsum('lcd,cdp->lp', lcd,einsum('cdab,pab->cdp', tci_ao, vrtx)) llp[s:f,:] = lp cc = einsum('ab,bc->ac', inv_hk, llp) pbiloc = prod_biloc_c(atoms=array([ia1,ia2]), vrtx=vrtx, cc2a=lc2c, cc2s=lc2s, cc=cc.T) self.bp2info.append(pbiloc) #print(ia1, ia2, len(mu2d), lc2c, hkernel_bp.sum(), inv_hk.sum()) self.dpc2s,self.dpc2t,self.dpc2sp = self.init_c2s_domiprod() # dominant product's counting return self