Exemple #1
0
def build(mydf, j_only=None, with_j3c=True, kpts_band=None):
    # Unlike DF and AFT class, here MDF objects are synced once
    if mpi.pool.size == 1:
        return df.DF.build(mydf, j_only, with_j3c, kpts_band)

    mydf = _sync_mydf(mydf)
    cell = mydf.cell
    log = logger.Logger(mydf.stdout, mydf.verbose)
    info = rank, platform.node(), platform.os.getpid()
    log.debug('MPI info (rank, host, pid)  %s', comm.gather(info))

    t1 = (time.clock(), time.time())
    if mydf.kpts_band is not None:
        mydf.kpts_band = numpy.reshape(mydf.kpts_band, (-1, 3))
    if kpts_band is not None:
        kpts_band = numpy.reshape(kpts_band, (-1, 3))
        if mydf.kpts_band is None:
            mydf.kpts_band = kpts_band
        else:
            mydf.kpts_band = unique(numpy.vstack(
                (mydf.kpts_band, kpts_band)))[0]

    mydf.dump_flags()

    mydf.auxcell = make_modrho_basis(cell, mydf.auxbasis, mydf.eta)

    if mydf.kpts_band is None:
        kpts = mydf.kpts
        kband_uniq = numpy.zeros((0, 3))
    else:
        kpts = mydf.kpts
        kband_uniq = [k for k in mydf.kpts_band if len(member(k, kpts)) == 0]
    if j_only is None:
        j_only = mydf._j_only
    if j_only:
        kall = numpy.vstack([kpts, kband_uniq])
        kptij_lst = numpy.hstack((kall, kall)).reshape(-1, 2, 3)
    else:
        kptij_lst = [(ki, kpts[j]) for i, ki in enumerate(kpts)
                     for j in range(i + 1)]
        kptij_lst.extend([(ki, kj) for ki in kband_uniq for kj in kpts])
        kptij_lst.extend([(ki, ki) for ki in kband_uniq])
        kptij_lst = numpy.asarray(kptij_lst)

    if with_j3c:
        if isinstance(mydf._cderi_to_save, str):
            cderi = mydf._cderi_to_save
        else:
            cderi = mydf._cderi_to_save.name
        if isinstance(mydf._cderi, str):
            log.warn(
                'Value of _cderi is ignored. DF integrals will be '
                'saved in file %s .', cderi)
        mydf._cderi = cderi
        mydf._make_j3c(cell, mydf.auxcell, kptij_lst, cderi)
        t1 = log.timer_debug1('j3c', *t1)
    return mydf
Exemple #2
0
def build(mydf, j_only=None, with_j3c=True, kpts_band=None):
# Unlike DF and AFT class, here MDF objects are synced once
    if mpi.pool.size == 1:
        return df.DF.build(mydf, j_only, with_j3c, kpts_band)

    mydf = _sync_mydf(mydf)
    cell = mydf.cell
    log = logger.Logger(mydf.stdout, mydf.verbose)
    log.debug('MPI info (rank, host, pid)  %s', mpi.platform_info())

    t1 = (time.clock(), time.time())
    if mydf.kpts_band is not None:
        mydf.kpts_band = numpy.reshape(mydf.kpts_band, (-1,3))
    if kpts_band is not None:
        kpts_band = numpy.reshape(kpts_band, (-1,3))
        if mydf.kpts_band is None:
            mydf.kpts_band = kpts_band
        else:
            mydf.kpts_band = unique(numpy.vstack((mydf.kpts_band,kpts_band)))[0]

    mydf.dump_flags()

    mydf.auxcell = make_modrho_basis(cell, mydf.auxbasis, mydf.eta)

    if mydf.kpts_band is None:
        kpts = mydf.kpts
        kband_uniq = numpy.zeros((0,3))
    else:
        kpts = mydf.kpts
        kband_uniq = [k for k in mydf.kpts_band if len(member(k, kpts))==0]
    if j_only is None:
        j_only = mydf._j_only
    if j_only:
        kall = numpy.vstack([kpts,kband_uniq])
        kptij_lst = numpy.hstack((kall,kall)).reshape(-1,2,3)
    else:
        kptij_lst = [(ki, kpts[j]) for i, ki in enumerate(kpts) for j in range(i+1)]
        kptij_lst.extend([(ki, kj) for ki in kband_uniq for kj in kpts])
        kptij_lst.extend([(ki, ki) for ki in kband_uniq])
        kptij_lst = numpy.asarray(kptij_lst)

    if with_j3c:
        if isinstance(mydf._cderi_to_save, str):
            cderi = mydf._cderi_to_save
        else:
            cderi = mydf._cderi_to_save.name
        if isinstance(mydf._cderi, str):
            log.warn('Value of _cderi is ignored. DF integrals will be '
                     'saved in file %s .', cderi)
        mydf._cderi = cderi
        mydf._make_j3c(cell, mydf.auxcell, kptij_lst, cderi)
        t1 = log.timer_debug1('j3c', *t1)
    return mydf
Exemple #3
0
def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file):
    log = logger.Logger(mydf.stdout, mydf.verbose)
    t1 = t0 = (time.clock(), time.time())

    fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell)
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    naux = auxcell.nao_nr()
    nkptij = len(kptij_lst)
    mesh = mydf.mesh
    Gv, Gvbase, kws = cell.get_Gv_weights(mesh)
    b = cell.reciprocal_vectors()
    gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase])
    ngrids = gxyz.shape[0]

    kptis = kptij_lst[:, 0]
    kptjs = kptij_lst[:, 1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    log.debug('Num uniq kpts %d', len(uniq_kpts))
    log.debug2('uniq_kpts %s', uniq_kpts)
    # j2c ~ (-kpt_ji | kpt_ji)
    j2c = fused_cell.pbc_intor('int2c2e', hermi=1, kpts=uniq_kpts)
    j2ctags = []
    t1 = log.timer_debug1('2c2e', *t1)

    swapfile = tempfile.NamedTemporaryFile(dir=os.path.dirname(cderi_file))
    fswap = lib.H5TmpFile(swapfile.name)
    # Unlink swapfile to avoid trash
    swapfile = None

    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, mydf.max_memory - mem_now)
    blksize = max(2048, int(max_memory * .5e6 / 16 / fused_cell.nao_nr()))
    log.debug2('max_memory %s (MB)  blocksize %s', max_memory, blksize)
    for k, kpt in enumerate(uniq_kpts):
        coulG = mydf.weighted_coulG(kpt, False, mesh)
        j2c_k = numpy.zeros_like(j2c[k])
        for p0, p1 in mydf.prange(0, ngrids, blksize):
            aoaux = ft_ao.ft_ao(fused_cell, Gv[p0:p1], None, b, gxyz[p0:p1],
                                Gvbase, kpt).T
            LkR = numpy.asarray(aoaux.real, order='C')
            LkI = numpy.asarray(aoaux.imag, order='C')
            aoaux = None

            if is_zero(kpt):  # kpti == kptj
                j2c_k[naux:] += lib.ddot(LkR[naux:] * coulG[p0:p1], LkR.T)
                j2c_k[naux:] += lib.ddot(LkI[naux:] * coulG[p0:p1], LkI.T)
            else:
                j2cR, j2cI = zdotCN(LkR[naux:] * coulG[p0:p1],
                                    LkI[naux:] * coulG[p0:p1], LkR.T, LkI.T)
                j2c_k[naux:] += j2cR + j2cI * 1j
            kLR = kLI = None

        j2c_k[:naux, naux:] = j2c_k[naux:, :naux].conj().T
        j2c[k] -= mpi.allreduce(j2c_k)
        j2c[k] = fuse(fuse(j2c[k]).T).T
        try:
            fswap['j2c/%d' % k] = scipy.linalg.cholesky(j2c[k], lower=True)
            j2ctags.append('CD')
        except scipy.linalg.LinAlgError as e:
            #msg =('===================================\n'
            #      'J-metric not positive definite.\n'
            #      'It is likely that mesh is not enough.\n'
            #      '===================================')
            #log.error(msg)
            #raise scipy.linalg.LinAlgError('\n'.join([str(e), msg]))
            w, v = scipy.linalg.eigh(j2c[k])
            log.debug2('metric linear dependency for kpt %s', k)
            log.debug2('cond = %.4g, drop %d bfns', w[0] / w[-1],
                       numpy.count_nonzero(w < mydf.linear_dep_threshold))
            v1 = v[:, w > mydf.linear_dep_threshold].T.conj()
            v1 /= numpy.sqrt(w[w > mydf.linear_dep_threshold]).reshape(-1, 1)
            fswap['j2c/%d' % k] = v1
            if cell.dimension == 2 and cell.low_dim_ft_type != 'inf_vacuum':
                idx = numpy.where(w < -mydf.linear_dep_threshold)[0]
                if len(idx) > 0:
                    fswap['j2c-/%d' % k] = (v[:, idx] /
                                            numpy.sqrt(-w[idx])).conj().T
            w = v = v1 = None
            j2ctags.append('eig')
    j2c = coulG = None

    aosym_s2 = numpy.einsum('ix->i', abs(kptis - kptjs)) < 1e-9
    j_only = numpy.all(aosym_s2)
    if gamma_point(kptij_lst):
        dtype = 'f8'
    else:
        dtype = 'c16'
    t1 = log.timer_debug1('aoaux and int2c', *t1)

    # Estimates the buffer size based on the last contraction in G-space.
    # This contraction requires to hold nkptj copies of (naux,?) array
    # simultaneously in memory.
    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, mydf.max_memory - mem_now)
    nkptj_max = max((uniq_inverse == x).sum() for x in set(uniq_inverse))
    buflen = max(
        int(
            min(max_memory * .5e6 / 16 / naux / (nkptj_max + 2) / nao,
                nao / 3 / mpi.pool.size)), 1)
    chunks = (buflen, nao)

    j3c_jobs = grids2d_int3c_jobs(cell, auxcell, kptij_lst, chunks, j_only)
    log.debug1('max_memory = %d MB (%d in use)  chunks %s', max_memory,
               mem_now, chunks)
    log.debug2('j3c_jobs %s', j3c_jobs)

    if j_only:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's2', 1, kptij_lst)
    else:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's1', 1, kptij_lst)
        idxb = numpy.tril_indices(nao)
        idxb = (idxb[0] * nao + idxb[1]).astype('i')
    aux_loc = fused_cell.ao_loc_nr('ssc' in 'int3c2e')

    def gen_int3c(job_id, ish0, ish1):
        dataname = 'j3c-chunks/%d' % job_id
        i0 = ao_loc[ish0]
        i1 = ao_loc[ish1]
        dii = i1 * (i1 + 1) // 2 - i0 * (i0 + 1) // 2
        if j_only:
            dij = dii
            buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dii + dii)))
        else:
            dij = (i1 - i0) * nao
            buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dij + dij)))
        auxranges = balance_segs(aux_loc[1:] - aux_loc[:-1], buflen)
        buflen = max([x[2] for x in auxranges])
        buf = numpy.empty(nkptij * dij * buflen, dtype=dtype)
        buf1 = numpy.empty(dij * buflen, dtype=dtype)

        naux = aux_loc[-1]
        for kpt_id, kptij in enumerate(kptij_lst):
            key = '%s/%d' % (dataname, kpt_id)
            if aosym_s2[kpt_id]:
                shape = (naux, dii)
            else:
                shape = (naux, dij)
            if gamma_point(kptij):
                fswap.create_dataset(key, shape, 'f8')
            else:
                fswap.create_dataset(key, shape, 'c16')

        naux0 = 0
        for istep, auxrange in enumerate(auxranges):
            log.alldebug2("aux_e1 job_id %d step %d", job_id, istep)
            sh0, sh1, nrow = auxrange
            sub_slice = (ish0, ish1, 0, cell.nbas, sh0, sh1)
            mat = numpy.ndarray((nkptij, dij, nrow), dtype=dtype, buffer=buf)
            mat = int3c(sub_slice, mat)

            for k, kptij in enumerate(kptij_lst):
                h5dat = fswap['%s/%d' % (dataname, k)]
                v = lib.transpose(mat[k], out=buf1)
                if not j_only and aosym_s2[k]:
                    idy = idxb[i0 * (i0 + 1) // 2:i1 *
                               (i1 + 1) // 2] - i0 * nao
                    out = numpy.ndarray((nrow, dii),
                                        dtype=v.dtype,
                                        buffer=mat[k])
                    v = numpy.take(v, idy, axis=1, out=out)
                if gamma_point(kptij):
                    h5dat[naux0:naux0 + nrow] = v.real
                else:
                    h5dat[naux0:naux0 + nrow] = v
            naux0 += nrow

    def ft_fuse(job_id, uniq_kptji_id, sh0, sh1):
        kpt = uniq_kpts[uniq_kptji_id]  # kpt = kptj - kpti
        adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0]
        adapted_kptjs = kptjs[adapted_ji_idx]
        nkptj = len(adapted_kptjs)

        j2c = numpy.asarray(fswap['j2c/%d' % uniq_kptji_id])
        j2ctag = j2ctags[uniq_kptji_id]
        naux0 = j2c.shape[0]
        if ('j2c-/%d' % uniq_kptji_id) in fswap:
            j2c_negative = numpy.asarray(fswap['j2c-/%d' % uniq_kptji_id])
        else:
            j2c_negative = None

        if is_zero(kpt):
            aosym = 's2'
        else:
            aosym = 's1'

        if aosym == 's2' and cell.dimension == 3:
            vbar = fuse(mydf.auxbar(fused_cell))
            ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=adapted_kptjs)
            ovlp = [lib.pack_tril(s) for s in ovlp]

        j3cR = [None] * nkptj
        j3cI = [None] * nkptj
        i0 = ao_loc[sh0]
        i1 = ao_loc[sh1]
        for k, idx in enumerate(adapted_ji_idx):
            key = 'j3c-chunks/%d/%d' % (job_id, idx)
            v = numpy.asarray(fswap[key])
            if aosym == 's2' and cell.dimension == 3:
                for i in numpy.where(vbar != 0)[0]:
                    v[i] -= vbar[i] * ovlp[k][i0 * (i0 + 1) // 2:i1 *
                                              (i1 + 1) // 2].ravel()
            j3cR[k] = numpy.asarray(v.real, order='C')
            if v.dtype == numpy.complex128:
                j3cI[k] = numpy.asarray(v.imag, order='C')
            v = None

        ncol = j3cR[0].shape[1]
        Gblksize = max(16, int(max_memory * 1e6 / 16 / ncol /
                               (nkptj + 1)))  # +1 for pqkRbuf/pqkIbuf
        Gblksize = min(Gblksize, ngrids, 16384)
        pqkRbuf = numpy.empty(ncol * Gblksize)
        pqkIbuf = numpy.empty(ncol * Gblksize)
        buf = numpy.empty(nkptj * ncol * Gblksize, dtype=numpy.complex128)
        log.alldebug2('job_id %d  blksize (%d,%d)', job_id, Gblksize, ncol)

        wcoulG = mydf.weighted_coulG(kpt, False, mesh)
        fused_cell_slice = (auxcell.nbas, fused_cell.nbas)
        if aosym == 's2':
            shls_slice = (sh0, sh1, 0, sh1)
        else:
            shls_slice = (sh0, sh1, 0, cell.nbas)
        for p0, p1 in lib.prange(0, ngrids, Gblksize):
            Gaux = ft_ao.ft_ao(fused_cell, Gv[p0:p1], fused_cell_slice, b,
                               gxyz[p0:p1], Gvbase, kpt)
            Gaux *= wcoulG[p0:p1, None]
            kLR = Gaux.real.copy('C')
            kLI = Gaux.imag.copy('C')
            Gaux = None

            dat = ft_ao._ft_aopair_kpts(cell,
                                        Gv[p0:p1],
                                        shls_slice,
                                        aosym,
                                        b,
                                        gxyz[p0:p1],
                                        Gvbase,
                                        kpt,
                                        adapted_kptjs,
                                        out=buf)
            nG = p1 - p0
            for k, ji in enumerate(adapted_ji_idx):
                aoao = dat[k].reshape(nG, ncol)
                pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf)
                pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf)
                pqkR[:] = aoao.real.T
                pqkI[:] = aoao.imag.T

                lib.dot(kLR.T, pqkR.T, -1, j3cR[k][naux:], 1)
                lib.dot(kLI.T, pqkI.T, -1, j3cR[k][naux:], 1)
                if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])):
                    lib.dot(kLR.T, pqkI.T, -1, j3cI[k][naux:], 1)
                    lib.dot(kLI.T, pqkR.T, 1, j3cI[k][naux:], 1)
            kLR = kLI = None

        for k, idx in enumerate(adapted_ji_idx):
            if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                v = fuse(j3cR[k])
            else:
                v = fuse(j3cR[k] + j3cI[k] * 1j)
            if j2ctag == 'CD':
                v = scipy.linalg.solve_triangular(j2c,
                                                  v,
                                                  lower=True,
                                                  overwrite_b=True)
                fswap['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = v
            else:
                fswap['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = lib.dot(
                    j2c, v)

            # low-dimension systems
            if j2c_negative is not None:
                fswap['j3c-/%d/%d' % (job_id, idx)] = lib.dot(j2c_negative, v)

    _assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap,
              log)
Exemple #4
0
def _assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap,
              log):
    t1 = (time.clock(), time.time())
    cell = mydf.cell
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    kptis = kptij_lst[:, 0]
    kptjs = kptij_lst[:, 1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    aosym_s2 = numpy.einsum('ix->i', abs(kptis - kptjs)) < 1e-9

    t2 = t1
    j3c_workers = numpy.zeros(len(j3c_jobs), dtype=int)
    #for job_id, ish0, ish1 in mpi.work_share_partition(j3c_jobs):
    for job_id, ish0, ish1 in mpi.work_stealing_partition(j3c_jobs):
        gen_int3c(job_id, ish0, ish1)
        t2 = log.alltimer_debug2('int j3c %d' % job_id, *t2)

        for k, kpt in enumerate(uniq_kpts):
            ft_fuse(job_id, k, ish0, ish1)
            t2 = log.alltimer_debug2('ft-fuse %d k %d' % (job_id, k), *t2)

        j3c_workers[job_id] = rank
    j3c_workers = mpi.allreduce(j3c_workers)
    log.debug2('j3c_workers %s', j3c_workers)
    t1 = log.timer_debug1('int3c and fuse', *t1)

    # Pass 2
    # Transpose 3-index tensor and save data in cderi_file
    feri = h5py.File(cderi_file, 'w')
    nauxs = [fswap['j2c/%d' % k].shape[0] for k, kpt in enumerate(uniq_kpts)]
    segsize = (max(nauxs) + mpi.pool.size - 1) // mpi.pool.size
    naux0 = rank * segsize
    for k, kptij in enumerate(kptij_lst):
        naux1 = min(nauxs[uniq_inverse[k]], naux0 + segsize)
        nrow = max(0, naux1 - naux0)
        if gamma_point(kptij):
            dtype = 'f8'
        else:
            dtype = 'c16'
        if aosym_s2[k]:
            nao_pair = nao * (nao + 1) // 2
        else:
            nao_pair = nao * nao
        feri.create_dataset('j3c/%d' % k, (nrow, nao_pair),
                            dtype,
                            maxshape=(None, nao_pair))

    def get_segs_loc(aosym):
        off0 = numpy.asarray([ao_loc[i0] for x, i0, i1 in j3c_jobs])
        off1 = numpy.asarray([ao_loc[i1] for x, i0, i1 in j3c_jobs])
        if aosym:  # s2
            dims = off1 * (off1 + 1) // 2 - off0 * (off0 + 1) // 2
        else:
            dims = (off1 - off0) * nao
        #dims = numpy.asarray([ao_loc[i1]-ao_loc[i0] for x,i0,i1 in j3c_jobs])
        dims = numpy.hstack(
            [dims[j3c_workers == w] for w in range(mpi.pool.size)])
        job_idx = numpy.hstack(
            [numpy.where(j3c_workers == w)[0] for w in range(mpi.pool.size)])
        segs_loc = numpy.append(0, numpy.cumsum(dims))
        segs_loc = [(segs_loc[j], segs_loc[j + 1])
                    for j in numpy.argsort(job_idx)]
        return segs_loc

    segs_loc_s1 = get_segs_loc(False)
    segs_loc_s2 = get_segs_loc(True)

    job_ids = numpy.where(rank == j3c_workers)[0]

    def load(k, p0, p1):
        naux1 = nauxs[uniq_inverse[k]]
        slices = [(min(i * segsize + p0, naux1), min(i * segsize + p1, naux1))
                  for i in range(mpi.pool.size)]
        segs = []
        for p0, p1 in slices:
            val = [
                fswap['j3c-chunks/%d/%d' % (job, k)][p0:p1].ravel()
                for job in job_ids
            ]
            if val:
                segs.append(numpy.hstack(val))
            else:
                segs.append(numpy.zeros(0))
        return segs

    def save(k, p0, p1, segs):
        segs = mpi.alltoall(segs)
        naux1 = nauxs[uniq_inverse[k]]
        loc0, loc1 = min(p0, naux1 - naux0), min(p1, naux1 - naux0)
        nL = loc1 - loc0
        if nL > 0:
            if aosym_s2[k]:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s2
                ])
            else:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s1
                ])
            feri['j3c/%d' % k][loc0:loc1] = segs

    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, min(8000, mydf.max_memory - mem_now))
    if numpy.all(aosym_s2):
        if gamma_point(kptij_lst):
            blksize = max(16, int(max_memory * .5e6 / 8 / nao**2))
        else:
            blksize = max(16, int(max_memory * .5e6 / 16 / nao**2))
    else:
        blksize = max(16, int(max_memory * .5e6 / 16 / nao**2 / 2))
    log.debug1('max_momory %d MB (%d in use), blksize %d', max_memory, mem_now,
               blksize)

    t2 = t1
    with lib.call_in_background(save) as async_write:
        for k, kptji in enumerate(kptij_lst):
            for p0, p1 in lib.prange(0, segsize, blksize):
                segs = load(k, p0, p1)
                async_write(k, p0, p1, segs)
                t2 = log.timer_debug1(
                    'assemble k=%d %d:%d (in %d)' % (k, p0, p1, segsize), *t2)

    if 'j2c-' in fswap:
        j2c_kpts_lists = []
        for k, kpt in enumerate(uniq_kpts):
            if ('j2c-/%d' % k) in fswap:
                adapted_ji_idx = numpy.where(uniq_inverse == k)[0]
                j2c_kpts_lists.append(adapted_ji_idx)

        for k in numpy.hstack(j2c_kpts_lists):
            val = [
                numpy.asarray(fswap['j3c-/%d/%d' % (job, k)]).ravel()
                for job in job_ids
            ]
            val = mpi.gather(numpy.hstack(val))
            if rank == 0:
                naux1 = fswap['j3c-/0/%d' % k].shape[0]
                if aosym_s2[k]:
                    v = [
                        val[i0 * naux1:i1 * naux1].reshape(naux1, -1)
                        for i0, i1 in segs_loc_s2
                    ]
                else:
                    v = [
                        val[i0 * naux1:i1 * naux1].reshape(naux1, -1)
                        for i0, i1 in segs_loc_s1
                    ]
                feri['j3c-/%d' % k] = numpy.hstack(v)

    if 'j3c-kptij' in feri: del (feri['j3c-kptij'])
    feri['j3c-kptij'] = kptij_lst
    t1 = log.alltimer_debug1('assembling j3c', *t1)
    feri.close()
Exemple #5
0
def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file):
    log = logger.Logger(mydf.stdout, mydf.verbose)
    t1 = t0 = (time.clock(), time.time())

    fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell)
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    naux = auxcell.nao_nr()
    nkptij = len(kptij_lst)
    gs = mydf.gs
    Gv, Gvbase, kws = cell.get_Gv_weights(gs)
    b = cell.reciprocal_vectors()
    gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase])
    ngs = gxyz.shape[0]

    kptis = kptij_lst[:, 0]
    kptjs = kptij_lst[:, 1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    log.debug('Num uniq kpts %d', len(uniq_kpts))
    log.debug2('uniq_kpts %s', uniq_kpts)
    # j2c ~ (-kpt_ji | kpt_ji)
    j2c = fused_cell.pbc_intor('int2c2e_sph', hermi=1, kpts=uniq_kpts)
    j2ctags = []
    nauxs = []
    t1 = log.timer_debug1('2c2e', *t1)

    if h5py.is_hdf5(cderi_file):
        feri = h5py.File(cderi_file)
    else:
        feri = h5py.File(cderi_file, 'w')
    for k, kpt in enumerate(uniq_kpts):
        aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T
        coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs))
        kLR = (aoaux.real * coulG).T
        kLI = (aoaux.imag * coulG).T
        if not kLR.flags.c_contiguous: kLR = lib.transpose(kLR.T)
        if not kLI.flags.c_contiguous: kLI = lib.transpose(kLI.T)
        aoaux = None

        kLR1 = numpy.asarray(kLR[:, naux:], order='C')
        kLI1 = numpy.asarray(kLI[:, naux:], order='C')
        if is_zero(kpt):  # kpti == kptj
            for p0, p1 in mydf.mpi_prange(0, ngs):
                j2cR = lib.ddot(kLR1[p0:p1].T, kLR[p0:p1])
                j2cR = lib.ddot(kLI1[p0:p1].T, kLI[p0:p1], 1, j2cR, 1)
                j2c[k][naux:] -= mpi.allreduce(j2cR)
                j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T
        else:
            for p0, p1 in mydf.mpi_prange(0, ngs):
                j2cR, j2cI = zdotCN(kLR1[p0:p1].T, kLI1[p0:p1].T, kLR[p0:p1],
                                    kLI[p0:p1])
                j2cR = mpi.allreduce(j2cR)
                j2cI = mpi.allreduce(j2cI)
                j2c[k][naux:] -= j2cR + j2cI * 1j
                j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T.conj()
        j2c[k] = fuse(fuse(j2c[k]).T).T
        try:
            feri['j2c/%d' % k] = scipy.linalg.cholesky(j2c[k], lower=True)
            j2ctags.append('CD')
            nauxs.append(naux)
        except scipy.linalg.LinAlgError as e:
            #msg =('===================================\n'
            #      'J-metric not positive definite.\n'
            #      'It is likely that gs is not enough.\n'
            #      '===================================')
            #log.error(msg)
            #raise scipy.linalg.LinAlgError('\n'.join([e.message, msg]))
            w, v = scipy.linalg.eigh(j2c)
            log.debug2('metric linear dependency for kpt %s', uniq_kptji_id)
            log.debug2('cond = %.4g, drop %d bfns', w[0] / w[-1],
                       numpy.count_nonzero(w < LINEAR_DEP_THR))
            v = v[:, w > LINEAR_DEP_THR].T.conj()
            v /= numpy.sqrt(w[w > LINEAR_DEP_THR]).reshape(-1, 1)
            feri['j2c/%d' % k] = v
            j2ctags.append('eig')
            nauxs.append(v.shape[0])
        kLR = kLI = kLR1 = kLI1 = coulG = None
    j2c = None

    aosym_s2 = numpy.einsum('ix->i', abs(kptis - kptjs)) < 1e-9
    j_only = numpy.all(aosym_s2)
    if gamma_point(kptij_lst):
        dtype = 'f8'
    else:
        dtype = 'c16'
    vbar = mydf.auxbar(fused_cell)
    vbar = fuse(vbar)
    ovlp = cell.pbc_intor('int1e_ovlp_sph', hermi=1, kpts=kptjs[aosym_s2])
    ovlp = [lib.pack_tril(s) for s in ovlp]
    t1 = log.timer_debug1('aoaux and int2c', *t1)

    # Estimates the buffer size based on the last contraction in G-space.
    # This contraction requires to hold nkptj copies of (naux,?) array
    # simultaneously in memory.
    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, mydf.max_memory - mem_now)
    nkptj_max = max((uniq_inverse == x).sum() for x in set(uniq_inverse))
    buflen = max(
        int(
            min(max_memory * .5e6 / 16 / naux / (nkptj_max + 2) / nao,
                nao / 3 / mpi.pool.size)), 1)
    chunks = (buflen, nao)

    j3c_jobs = grids2d_int3c_jobs(cell, auxcell, kptij_lst, chunks, j_only)
    log.debug1('max_memory = %d MB (%d in use)  chunks %s', max_memory,
               mem_now, chunks)
    log.debug2('j3c_jobs %s', j3c_jobs)

    if j_only:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e_sph', 's2', 1, kptij_lst)
    else:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e_sph', 's1', 1, kptij_lst)
        idxb = numpy.tril_indices(nao)
        idxb = (idxb[0] * nao + idxb[1]).astype('i')
    aux_loc = fused_cell.ao_loc_nr('ssc' in 'int3c2e_sph')

    def gen_int3c(auxcell, job_id, ish0, ish1):
        dataname = 'j3c-chunks/%d' % job_id
        if dataname in feri:
            del (feri[dataname])

        i0 = ao_loc[ish0]
        i1 = ao_loc[ish1]
        dii = i1 * (i1 + 1) // 2 - i0 * (i0 + 1) // 2
        dij = (i1 - i0) * nao
        if j_only:
            buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dii + dii)))
        else:
            buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dij + dij)))
        auxranges = balance_segs(aux_loc[1:] - aux_loc[:-1], buflen)
        buflen = max([x[2] for x in auxranges])
        buf = numpy.empty(nkptij * dij * buflen, dtype=dtype)
        buf1 = numpy.empty(dij * buflen, dtype=dtype)

        naux = aux_loc[-1]
        for kpt_id, kptij in enumerate(kptij_lst):
            key = '%s/%d' % (dataname, kpt_id)
            if aosym_s2[kpt_id]:
                shape = (naux, dii)
            else:
                shape = (naux, dij)
            if gamma_point(kptij):
                feri.create_dataset(key, shape, 'f8')
            else:
                feri.create_dataset(key, shape, 'c16')

        naux0 = 0
        for istep, auxrange in enumerate(auxranges):
            log.alldebug2("aux_e2 job_id %d step %d", job_id, istep)
            sh0, sh1, nrow = auxrange
            sub_slice = (ish0, ish1, 0, cell.nbas, sh0, sh1)
            if j_only:
                mat = numpy.ndarray((nkptij, dii, nrow),
                                    dtype=dtype,
                                    buffer=buf)
            else:
                mat = numpy.ndarray((nkptij, dij, nrow),
                                    dtype=dtype,
                                    buffer=buf)
            mat = int3c(sub_slice, mat)

            for k, kptij in enumerate(kptij_lst):
                h5dat = feri['%s/%d' % (dataname, k)]
                v = lib.transpose(mat[k], out=buf1)
                if not j_only and aosym_s2[k]:
                    idy = idxb[i0 * (i0 + 1) // 2:i1 *
                               (i1 + 1) // 2] - i0 * nao
                    out = numpy.ndarray((nrow, dii),
                                        dtype=v.dtype,
                                        buffer=mat[k])
                    v = numpy.take(v, idy, axis=1, out=out)
                if gamma_point(kptij):
                    h5dat[naux0:naux0 + nrow] = v.real
                else:
                    h5dat[naux0:naux0 + nrow] = v
            naux0 += nrow

    def ft_fuse(job_id, uniq_kptji_id, sh0, sh1):
        kpt = uniq_kpts[uniq_kptji_id]  # kpt = kptj - kpti
        adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0]
        adapted_kptjs = kptjs[adapted_ji_idx]
        nkptj = len(adapted_kptjs)

        shls_slice = (auxcell.nbas, fused_cell.nbas)
        Gaux = ft_ao.ft_ao(fused_cell, Gv, shls_slice, b, gxyz, Gvbase, kpt)
        Gaux *= mydf.weighted_coulG(kpt, False, gs).reshape(-1, 1)
        kLR = Gaux.real.copy('C')
        kLI = Gaux.imag.copy('C')
        j2c = numpy.asarray(feri['j2c/%d' % uniq_kptji_id])
        j2ctag = j2ctags[uniq_kptji_id]
        naux0 = j2c.shape[0]

        if is_zero(kpt):
            aosym = 's2'
        else:
            aosym = 's1'

        j3cR = [None] * nkptj
        j3cI = [None] * nkptj
        i0 = ao_loc[sh0]
        i1 = ao_loc[sh1]
        for k, idx in enumerate(adapted_ji_idx):
            key = 'j3c-chunks/%d/%d' % (job_id, idx)
            v = numpy.asarray(feri[key])
            if is_zero(kpt):
                for i, c in enumerate(vbar):
                    if c != 0:
                        v[i] -= c * ovlp[k][i0 * (i0 + 1) // 2:i1 *
                                            (i1 + 1) // 2].ravel()
            j3cR[k] = numpy.asarray(v.real, order='C')
            if v.dtype == numpy.complex128:
                j3cI[k] = numpy.asarray(v.imag, order='C')
            v = None

        ncol = j3cR[0].shape[1]
        Gblksize = max(16, int(max_memory * 1e6 / 16 / ncol /
                               (nkptj + 1)))  # +1 for pqkRbuf/pqkIbuf
        Gblksize = min(Gblksize, ngs, 16384)
        pqkRbuf = numpy.empty(ncol * Gblksize)
        pqkIbuf = numpy.empty(ncol * Gblksize)
        buf = numpy.empty(nkptj * ncol * Gblksize, dtype=numpy.complex128)
        log.alldebug2('    blksize (%d,%d)', Gblksize, ncol)

        shls_slice = (sh0, sh1, 0, cell.nbas)
        for p0, p1 in lib.prange(0, ngs, Gblksize):
            dat = ft_ao._ft_aopair_kpts(cell,
                                        Gv[p0:p1],
                                        shls_slice,
                                        aosym,
                                        b,
                                        gxyz[p0:p1],
                                        Gvbase,
                                        kpt,
                                        adapted_kptjs,
                                        out=buf)
            nG = p1 - p0
            for k, ji in enumerate(adapted_ji_idx):
                aoao = dat[k].reshape(nG, ncol)
                pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf)
                pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf)
                pqkR[:] = aoao.real.T
                pqkI[:] = aoao.imag.T

                lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1)
                lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1)
                if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])):
                    lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1)
                    lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1)

        for k, idx in enumerate(adapted_ji_idx):
            if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                v = fuse(j3cR[k])
            else:
                v = fuse(j3cR[k] + j3cI[k] * 1j)
            if j2ctag == 'CD':
                v = scipy.linalg.solve_triangular(j2c,
                                                  v,
                                                  lower=True,
                                                  overwrite_b=True)
            else:
                v = lib.dot(j2c, v)
            feri['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = v

    t2 = t1
    j3c_workers = numpy.zeros(len(j3c_jobs), dtype=int)
    #for job_id, ish0, ish1 in mpi.work_share_partition(j3c_jobs):
    for job_id, ish0, ish1 in mpi.work_stealing_partition(j3c_jobs):
        gen_int3c(fused_cell, job_id, ish0, ish1)
        t2 = log.alltimer_debug2('int j3c %d' % job_id, *t2)

        for k, kpt in enumerate(uniq_kpts):
            ft_fuse(job_id, k, ish0, ish1)
            t2 = log.alltimer_debug2('ft-fuse %d k %d' % (job_id, k), *t2)

        j3c_workers[job_id] = rank
    j3c_workers = mpi.allreduce(j3c_workers)
    log.debug2('j3c_workers %s', j3c_workers)
    j2c = kLRs = kLIs = ovlp = vbar = fuse = gen_int3c = ft_fuse = None
    t1 = log.timer_debug1('int3c and fuse', *t1)

    def get_segs_loc(aosym):
        off0 = numpy.asarray([ao_loc[i0] for x, i0, i1 in j3c_jobs])
        off1 = numpy.asarray([ao_loc[i1] for x, i0, i1 in j3c_jobs])
        if aosym:  # s2
            dims = off1 * (off1 + 1) // 2 - off0 * (off0 + 1) // 2
        else:
            dims = (off1 - off0) * nao
        #dims = numpy.asarray([ao_loc[i1]-ao_loc[i0] for x,i0,i1 in j3c_jobs])
        dims = numpy.hstack(
            [dims[j3c_workers == w] for w in range(mpi.pool.size)])
        job_idx = numpy.hstack(
            [numpy.where(j3c_workers == w)[0] for w in range(mpi.pool.size)])
        segs_loc = numpy.append(0, numpy.cumsum(dims))
        segs_loc = [(segs_loc[j], segs_loc[j + 1])
                    for j in numpy.argsort(job_idx)]
        return segs_loc

    segs_loc_s1 = get_segs_loc(False)
    segs_loc_s2 = get_segs_loc(True)

    if 'j3c' in feri: del (feri['j3c'])
    segsize = (max(nauxs) + mpi.pool.size - 1) // mpi.pool.size
    naux0 = rank * segsize
    for k, kptij in enumerate(kptij_lst):
        naux1 = min(nauxs[uniq_inverse[k]], naux0 + segsize)
        nrow = max(0, naux1 - naux0)
        if gamma_point(kptij):
            dtype = 'f8'
        else:
            dtype = 'c16'
        if aosym_s2[k]:
            nao_pair = nao * (nao + 1) // 2
        else:
            nao_pair = nao * nao
        feri.create_dataset('j3c/%d' % k, (nrow, nao_pair),
                            dtype,
                            maxshape=(None, nao_pair))

    def load(k, p0, p1):
        naux1 = nauxs[uniq_inverse[k]]
        slices = [(min(i * segsize + p0, naux1), min(i * segsize + p1, naux1))
                  for i in range(mpi.pool.size)]
        segs = []
        for p0, p1 in slices:
            val = []
            for job_id, worker in enumerate(j3c_workers):
                if rank == worker:
                    key = 'j3c-chunks/%d/%d' % (job_id, k)
                    val.append(feri[key][p0:p1].ravel())
            if val:
                segs.append(numpy.hstack(val))
            else:
                segs.append(numpy.zeros(0))
        return segs

    def save(k, p0, p1, segs):
        segs = mpi.alltoall(segs)
        naux1 = nauxs[uniq_inverse[k]]
        loc0, loc1 = min(p0, naux1 - naux0), min(p1, naux1 - naux0)
        nL = loc1 - loc0
        if nL > 0:
            if aosym_s2[k]:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s2
                ])
            else:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s1
                ])
            feri['j3c/%d' % k][loc0:loc1] = segs

    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, min(8000, mydf.max_memory - mem_now))
    if numpy.all(aosym_s2):
        if gamma_point(kptij_lst):
            blksize = max(16, int(max_memory * .5e6 / 8 / nao**2))
        else:
            blksize = max(16, int(max_memory * .5e6 / 16 / nao**2))
    else:
        blksize = max(16, int(max_memory * .5e6 / 16 / nao**2 / 2))
    log.debug1('max_momory %d MB (%d in use), blksize %d', max_memory, mem_now,
               blksize)

    t2 = t1
    with lib.call_in_background(save) as async_write:
        for k, kptji in enumerate(kptij_lst):
            for p0, p1 in lib.prange(0, segsize, blksize):
                segs = load(k, p0, p1)
                async_write(k, p0, p1, segs)
                t2 = log.timer_debug1(
                    'assemble k=%d %d:%d (in %d)' % (k, p0, p1, segsize), *t2)

    if 'j3c-chunks' in feri: del (feri['j3c-chunks'])
    if 'j3c-kptij' in feri: del (feri['j3c-kptij'])
    feri['j3c-kptij'] = kptij_lst
    t1 = log.alltimer_debug1('assembling j3c', *t1)
    feri.close()
Exemple #6
0
def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file):
    log = logger.Logger(mydf.stdout, mydf.verbose)
    t1 = t0 = (time.clock(), time.time())

    fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell)
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    naux = auxcell.nao_nr()
    nkptij = len(kptij_lst)
    mesh = mydf.mesh
    Gv, Gvbase, kws = cell.get_Gv_weights(mesh)
    b = cell.reciprocal_vectors()
    gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase])
    ngrids = gxyz.shape[0]

    kptis = kptij_lst[:,0]
    kptjs = kptij_lst[:,1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    log.debug('Num uniq kpts %d', len(uniq_kpts))
    log.debug2('uniq_kpts %s', uniq_kpts)
    # j2c ~ (-kpt_ji | kpt_ji)
    j2c = fused_cell.pbc_intor('int2c2e', hermi=1, kpts=uniq_kpts)
    j2ctags = []
    t1 = log.timer_debug1('2c2e', *t1)

    swapfile = tempfile.NamedTemporaryFile(dir=os.path.dirname(cderi_file))
    fswap = lib.H5TmpFile(swapfile.name)
    # Unlink swapfile to avoid trash
    swapfile = None

    for k, kpt in enumerate(uniq_kpts):
        coulG = mydf.weighted_coulG(kpt, False, mesh)
        j2c[k] = fuse(fuse(j2c[k]).T).T.copy()
        j2c_k = numpy.zeros_like(j2c[k])
        for p0, p1 in mydf.mpi_prange(0, ngrids):
            aoaux = ft_ao.ft_ao(fused_cell, Gv[p0:p1], None, b, gxyz[p0:p1], Gvbase, kpt).T
            aoaux = fuse(aoaux)
            LkR = numpy.asarray(aoaux.real, order='C')
            LkI = numpy.asarray(aoaux.imag, order='C')
            aoaux = None

            if is_zero(kpt):  # kpti == kptj
                j2cR   = lib.dot(LkR*coulG[p0:p1], LkR.T)
                j2c_k += lib.dot(LkI*coulG[p0:p1], LkI.T, 1, j2cR, 1)
            else:
                # aoaux ~ kpt_ij, aoaux.conj() ~ kpt_kl
                j2cR, j2cI = zdotCN(LkR*coulG[p0:p1], LkI*coulG[p0:p1], LkR.T, LkI.T)
                j2c_k += j2cR + j2cI * 1j
            LkR = LkI = None
        j2c[k] -= mpi.allreduce(j2c_k)

        try:
            fswap['j2c/%d'%k] = scipy.linalg.cholesky(j2c[k], lower=True)
            j2ctags.append('CD')
        except scipy.linalg.LinAlgError:
            w, v = scipy.linalg.eigh(j2c[k])
            log.debug2('metric linear dependency for kpt %s', k)
            log.debug2('cond = %.4g, drop %d bfns',
                       w[0]/w[-1], numpy.count_nonzero(w<mydf.linear_dep_threshold))
            v1 = v[:,w>mydf.linear_dep_threshold].T.conj()
            v1 /= numpy.sqrt(w[w>mydf.linear_dep_threshold]).reshape(-1,1)
            fswap['j2c/%d'%k] = v1
            if cell.dimension == 2 and cell.low_dim_ft_type != 'inf_vacuum':
                idx = numpy.where(w < -mydf.linear_dep_threshold)[0]
                if len(idx) > 0:
                    fswap['j2c-/%d'%k] = (v[:,idx]/numpy.sqrt(-w[idx])).conj().T
            w = v = v1 = v2 = None
            j2ctags.append('eig')
        aoaux = kLR = kLI = j2cR = j2cI = coulG = None
    j2c = None

    aosym_s2 = numpy.einsum('ix->i', abs(kptis-kptjs)) < 1e-9
    j_only = numpy.all(aosym_s2)
    if gamma_point(kptij_lst):
        dtype = 'f8'
    else:
        dtype = 'c16'
    t1 = log.timer_debug1('aoaux and int2c', *t1)

# Estimates the buffer size based on the last contraction in G-space.
# This contraction requires to hold nkptj copies of (naux,?) array
# simultaneously in memory.
    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, mydf.max_memory - mem_now)
    nkptj_max = max((uniq_inverse==x).sum() for x in set(uniq_inverse))
    buflen = max(int(min(max_memory*.5e6/16/naux/(nkptj_max+2)/nao,
                         nao/3/mpi.pool.size)), 1)
    chunks = (buflen, nao)

    j3c_jobs = mpi_df.grids2d_int3c_jobs(cell, auxcell, kptij_lst, chunks, j_only)
    log.debug1('max_memory = %d MB (%d in use)  chunks %s',
               max_memory, mem_now, chunks)
    log.debug2('j3c_jobs %s', j3c_jobs)

    if j_only:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's2', 1, kptij_lst)
    else:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's1', 1, kptij_lst)
        idxb = numpy.tril_indices(nao)
        idxb = (idxb[0] * nao + idxb[1]).astype('i')
    aux_loc = fused_cell.ao_loc_nr(fused_cell.cart)

    def gen_int3c(job_id, ish0, ish1):
        dataname = 'j3c-chunks/%d' % job_id
        i0 = ao_loc[ish0]
        i1 = ao_loc[ish1]
        dii = i1*(i1+1)//2 - i0*(i0+1)//2
        dij = (i1 - i0) * nao
        if j_only:
            buflen = max(8, int(max_memory*1e6/16/(nkptij*dii+dii)))
        else:
            buflen = max(8, int(max_memory*1e6/16/(nkptij*dij+dij)))
        auxranges = balance_segs(aux_loc[1:]-aux_loc[:-1], buflen)
        buflen = max([x[2] for x in auxranges])
        buf = numpy.empty(nkptij*dij*buflen, dtype=dtype)
        buf1 = numpy.empty(dij*buflen, dtype=dtype)

        naux = aux_loc[-1]
        for kpt_id, kptij in enumerate(kptij_lst):
            key = '%s/%d' % (dataname, kpt_id)
            if aosym_s2[kpt_id]:
                shape = (naux, dii)
            else:
                shape = (naux, dij)
            if gamma_point(kptij):
                fswap.create_dataset(key, shape, 'f8')
            else:
                fswap.create_dataset(key, shape, 'c16')

        naux0 = 0
        for istep, auxrange in enumerate(auxranges):
            log.alldebug2("aux_e1 job_id %d step %d", job_id, istep)
            sh0, sh1, nrow = auxrange
            sub_slice = (ish0, ish1, 0, cell.nbas, sh0, sh1)
            if j_only:
                mat = numpy.ndarray((nkptij,dii,nrow), dtype=dtype, buffer=buf)
            else:
                mat = numpy.ndarray((nkptij,dij,nrow), dtype=dtype, buffer=buf)
            mat = int3c(sub_slice, mat)

            for k, kptij in enumerate(kptij_lst):
                h5dat = fswap['%s/%d'%(dataname,k)]
                v = lib.transpose(mat[k], out=buf1)
                if not j_only and aosym_s2[k]:
                    idy = idxb[i0*(i0+1)//2:i1*(i1+1)//2] - i0 * nao
                    out = numpy.ndarray((nrow,dii), dtype=v.dtype, buffer=mat[k])
                    v = numpy.take(v, idy, axis=1, out=out)
                if gamma_point(kptij):
                    h5dat[naux0:naux0+nrow] = v.real
                else:
                    h5dat[naux0:naux0+nrow] = v
            naux0 += nrow

    def ft_fuse(job_id, uniq_kptji_id, sh0, sh1):
        kpt = uniq_kpts[uniq_kptji_id]  # kpt = kptj - kpti
        adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0]
        adapted_kptjs = kptjs[adapted_ji_idx]
        nkptj = len(adapted_kptjs)

        Gaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T
        Gaux = fuse(Gaux)
        Gaux *= mydf.weighted_coulG(kpt, False, mesh)
        kLR = lib.transpose(numpy.asarray(Gaux.real, order='C'))
        kLI = lib.transpose(numpy.asarray(Gaux.imag, order='C'))
        j2c = numpy.asarray(fswap['j2c/%d'%uniq_kptji_id])
        j2ctag = j2ctags[uniq_kptji_id]
        naux0 = j2c.shape[0]
        if ('j2c-/%d' % uniq_kptji_id) in fswap:
            j2c_negative = numpy.asarray(fswap['j2c-/%d'%uniq_kptji_id])
        else:
            j2c_negative = None

        if is_zero(kpt):
            aosym = 's2'
        else:
            aosym = 's1'

        if aosym == 's2' and cell.dimension == 3:
            vbar = fuse(mydf.auxbar(fused_cell))
            ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=adapted_kptjs)
            ovlp = [lib.pack_tril(s) for s in ovlp]

        j3cR = [None] * nkptj
        j3cI = [None] * nkptj
        i0 = ao_loc[sh0]
        i1 = ao_loc[sh1]
        for k, idx in enumerate(adapted_ji_idx):
            key = 'j3c-chunks/%d/%d' % (job_id, idx)
            v = fuse(numpy.asarray(fswap[key]))
            if aosym == 's2' and cell.dimension == 3:
                for i in numpy.where(vbar != 0)[0]:
                    v[i] -= vbar[i] * ovlp[k][i0*(i0+1)//2:i1*(i1+1)//2].ravel()
            j3cR[k] = numpy.asarray(v.real, order='C')
            if v.dtype == numpy.complex128:
                j3cI[k] = numpy.asarray(v.imag, order='C')
            v = None

        ncol = j3cR[0].shape[1]
        Gblksize = max(16, int(max_memory*1e6/16/ncol/(nkptj+1)))  # +1 for pqkRbuf/pqkIbuf
        Gblksize = min(Gblksize, ngrids, 16384)
        pqkRbuf = numpy.empty(ncol*Gblksize)
        pqkIbuf = numpy.empty(ncol*Gblksize)
        buf = numpy.empty(nkptj*ncol*Gblksize, dtype=numpy.complex128)
        log.alldebug2('    blksize (%d,%d)', Gblksize, ncol)

        if aosym == 's2':
            shls_slice = (sh0, sh1, 0, sh1)
        else:
            shls_slice = (sh0, sh1, 0, cell.nbas)
        for p0, p1 in lib.prange(0, ngrids, Gblksize):
            dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b,
                                        gxyz[p0:p1], Gvbase, kpt,
                                        adapted_kptjs, out=buf)
            nG = p1 - p0
            for k, ji in enumerate(adapted_ji_idx):
                aoao = dat[k].reshape(nG,ncol)
                pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf)
                pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf)
                pqkR[:] = aoao.real.T
                pqkI[:] = aoao.imag.T

                lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1)
                lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1)
                if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])):
                    lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1)
                    lib.dot(kLI[p0:p1].T, pqkR.T,  1, j3cI[k], 1)

        for k, idx in enumerate(adapted_ji_idx):
            if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                v = j3cR[k]
            else:
                v = j3cR[k] + j3cI[k] * 1j
            if j2ctag == 'CD':
                v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True)
                fswap['j3c-chunks/%d/%d'%(job_id,idx)][:naux0] = v
            else:
                fswap['j3c-chunks/%d/%d'%(job_id,idx)][:naux0] = lib.dot(j2c, v)

            # low-dimension systems
            if j2c_negative is not None:
                fswap['j3c-/%d/%d'%(job_id,idx)] = lib.dot(j2c_negative, v)

    mpi_df._assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap, log)
Exemple #7
0
def _assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap, log):
    t1 = (time.clock(), time.time())
    cell = mydf.cell
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    kptis = kptij_lst[:,0]
    kptjs = kptij_lst[:,1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    aosym_s2 = numpy.einsum('ix->i', abs(kptis-kptjs)) < 1e-9

    t2 = t1
    j3c_workers = numpy.zeros(len(j3c_jobs), dtype=int)
    #for job_id, ish0, ish1 in mpi.work_share_partition(j3c_jobs):
    for job_id, ish0, ish1 in mpi.work_stealing_partition(j3c_jobs):
        gen_int3c(job_id, ish0, ish1)
        t2 = log.alltimer_debug2('int j3c %d' % job_id, *t2)

        for k, kpt in enumerate(uniq_kpts):
            ft_fuse(job_id, k, ish0, ish1)
            t2 = log.alltimer_debug2('ft-fuse %d k %d' % (job_id, k), *t2)

        j3c_workers[job_id] = rank
    j3c_workers = mpi.allreduce(j3c_workers)
    log.debug2('j3c_workers %s', j3c_workers)
    t1 = log.timer_debug1('int3c and fuse', *t1)

    # Pass 2
    # Transpose 3-index tensor and save data in cderi_file
    feri = h5py.File(cderi_file, 'w')
    nauxs = [fswap['j2c/%d'%k].shape[0] for k, kpt in enumerate(uniq_kpts)]
    segsize = (max(nauxs)+mpi.pool.size-1) // mpi.pool.size
    naux0 = rank * segsize
    for k, kptij in enumerate(kptij_lst):
        naux1 = min(nauxs[uniq_inverse[k]], naux0+segsize)
        nrow = max(0, naux1-naux0)
        if gamma_point(kptij):
            dtype = 'f8'
        else:
            dtype = 'c16'
        if aosym_s2[k]:
            nao_pair = nao * (nao+1) // 2
        else:
            nao_pair = nao * nao
        feri.create_dataset('j3c/%d'%k, (nrow,nao_pair), dtype, maxshape=(None,nao_pair))

    def get_segs_loc(aosym):
        off0 = numpy.asarray([ao_loc[i0] for x,i0,i1 in j3c_jobs])
        off1 = numpy.asarray([ao_loc[i1] for x,i0,i1 in j3c_jobs])
        if aosym:  # s2
            dims = off1*(off1+1)//2 - off0*(off0+1)//2
        else:
            dims = (off1-off0) * nao
        #dims = numpy.asarray([ao_loc[i1]-ao_loc[i0] for x,i0,i1 in j3c_jobs])
        dims = numpy.hstack([dims[j3c_workers==w] for w in range(mpi.pool.size)])
        job_idx = numpy.hstack([numpy.where(j3c_workers==w)[0]
                                for w in range(mpi.pool.size)])
        segs_loc = numpy.append(0, numpy.cumsum(dims))
        segs_loc = [(segs_loc[j], segs_loc[j+1]) for j in numpy.argsort(job_idx)]
        return segs_loc
    segs_loc_s1 = get_segs_loc(False)
    segs_loc_s2 = get_segs_loc(True)

    job_ids = numpy.where(rank == j3c_workers)[0]
    def load(k, p0, p1):
        naux1 = nauxs[uniq_inverse[k]]
        slices = [(min(i*segsize+p0,naux1), min(i*segsize+p1,naux1))
                  for i in range(mpi.pool.size)]
        segs = []
        for p0, p1 in slices:
            val = [fswap['j3c-chunks/%d/%d' % (job, k)][p0:p1].ravel()
                   for job in job_ids]
            if val:
                segs.append(numpy.hstack(val))
            else:
                segs.append(numpy.zeros(0))
        return segs

    def save(k, p0, p1, segs):
        segs = mpi.alltoall(segs)
        naux1 = nauxs[uniq_inverse[k]]
        loc0, loc1 = min(p0, naux1-naux0), min(p1, naux1-naux0)
        nL = loc1 - loc0
        if nL > 0:
            if aosym_s2[k]:
                segs = numpy.hstack([segs[i0*nL:i1*nL].reshape(nL,-1)
                                     for i0,i1 in segs_loc_s2])
            else:
                segs = numpy.hstack([segs[i0*nL:i1*nL].reshape(nL,-1)
                                     for i0,i1 in segs_loc_s1])
            feri['j3c/%d'%k][loc0:loc1] = segs

    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, min(8000, mydf.max_memory - mem_now))
    if numpy.all(aosym_s2):
        if gamma_point(kptij_lst):
            blksize = max(16, int(max_memory*.5e6/8/nao**2))
        else:
            blksize = max(16, int(max_memory*.5e6/16/nao**2))
    else:
        blksize = max(16, int(max_memory*.5e6/16/nao**2/2))
    log.debug1('max_momory %d MB (%d in use), blksize %d',
               max_memory, mem_now, blksize)

    t2 = t1
    with lib.call_in_background(save) as async_write:
        for k, kptji in enumerate(kptij_lst):
            for p0, p1 in lib.prange(0, segsize, blksize):
                segs = load(k, p0, p1)
                async_write(k, p0, p1, segs)
                t2 = log.timer_debug1('assemble k=%d %d:%d (in %d)' %
                                      (k, p0, p1, segsize), *t2)

    if 'j2c-' in fswap:
        j2c_kpts_lists = []
        for k, kpt in enumerate(uniq_kpts):
            if ('j2c-/%d' % k) in fswap:
                adapted_ji_idx = numpy.where(uniq_inverse == k)[0]
                j2c_kpts_lists.append(adapted_ji_idx)

        for k in numpy.hstack(j2c_kpts_lists):
            val = [numpy.asarray(fswap['j3c-/%d/%d' % (job, k)]).ravel()
                   for job in job_ids]
            val = mpi.gather(numpy.hstack(val))
            if rank == 0:
                naux1 = fswap['j3c-/0/%d'%k].shape[0]
                if aosym_s2[k]:
                    v = [val[i0*naux1:i1*naux1].reshape(naux1,-1)
                         for i0,i1 in segs_loc_s2]
                else:
                    v = [val[i0*naux1:i1*naux1].reshape(naux1,-1)
                         for i0,i1 in segs_loc_s1]
                feri['j3c-/%d'%k] = numpy.hstack(v)

    if 'j3c-kptij' in feri: del(feri['j3c-kptij'])
    feri['j3c-kptij'] = kptij_lst
    t1 = log.alltimer_debug1('assembling j3c', *t1)
    feri.close()
Exemple #8
0
def _make_j3c(mydf, cell, auxcell, kptij_lst):
    t1 = (time.clock(), time.time())
    log = logger.Logger(mydf.stdout, mydf.verbose)
    max_memory = max(2000, mydf.max_memory - lib.current_memory()[0])
    fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell)

    nao = cell.nao_nr()
    naux = auxcell.nao_nr()
    gs = mydf.gs
    Gv, Gvbase, kws = cell.get_Gv_weights(gs)
    b = cell.reciprocal_vectors()
    gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase])
    ngs = gxyz.shape[0]

    kptis = kptij_lst[:, 0]
    kptjs = kptij_lst[:, 1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    # j2c ~ (-kpt_ji | kpt_ji)
    j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts)
    kLRs = []
    kLIs = []
    for k, kpt in enumerate(uniq_kpts):
        aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T
        aoaux = fuse(aoaux)
        coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs))
        kLR = (aoaux.real * coulG).T
        kLI = (aoaux.imag * coulG).T
        if not kLR.flags.c_contiguous: kLR = lib.transpose(kLR.T)
        if not kLI.flags.c_contiguous: kLI = lib.transpose(kLI.T)

        j2c[k] = fuse(fuse(j2c[k]).T).T.copy()
        if is_zero(kpt):  # kpti == kptj
            j2c[k] -= lib.dot(kLR.T, kLR)
            j2c[k] -= lib.dot(kLI.T, kLI)
        else:
            # aoaux ~ kpt_ij, aoaux.conj() ~ kpt_kl
            j2cR, j2cI = zdotCN(kLR.T, kLI.T, kLR, kLI)
            j2c[k] -= j2cR + j2cI * 1j

        try:
            j2c[k] = ('CD', scipy.linalg.cholesky(j2c[k], lower=True))
        except scipy.linalg.LinAlgError:
            w, v = scipy.linalg.eigh(j2c[k])
            log.debug2('metric linear dependency for kpt %s', k)
            log.debug2('cond = %.4g, drop %d bfns', w[0] / w[-1],
                       numpy.count_nonzero(w < df.LINEAR_DEP_THR))
            v = v[:, w > df.LINEAR_DEP_THR].T.conj()
            v /= numpy.sqrt(w[w > df.LINEAR_DEP_THR]).reshape(-1, 1)
            j2c[k] = ('eig', v)

        kLR *= coulG.reshape(-1, 1)
        kLI *= coulG.reshape(-1, 1)
        kLRs.append(kLR)
        kLIs.append(kLI)
        aoaux = kLR = kLI = j2cR = j2cI = coulG = None

    outcore.aux_e2(cell,
                   fused_cell,
                   mydf._cderi,
                   'cint3c2e_sph',
                   kptij_lst=kptij_lst,
                   dataname='j3c',
                   max_memory=max_memory)
    t1 = log.timer_debug1('3c2e', *t1)
    nauxs = [v[1].shape[0] for v in j2c]
    feri = h5py.File(mydf._cderi)

    def make_kpt(uniq_kptji_id):  # kpt = kptj - kpti
        kpt = uniq_kpts[uniq_kptji_id]
        log.debug1('kpt = %s', kpt)
        adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0]
        adapted_kptjs = kptjs[adapted_ji_idx]
        nkptj = len(adapted_kptjs)
        log.debug1('adapted_ji_idx = %s', adapted_ji_idx)
        kLR = kLRs[uniq_kptji_id]
        kLI = kLIs[uniq_kptji_id]

        if is_zero(kpt):  # kpti == kptj
            aosym = 's2'
            nao_pair = nao * (nao + 1) // 2

            vbar = fuse(mydf.auxbar(fused_cell))
            ovlp = cell.pbc_intor('cint1e_ovlp_sph',
                                  hermi=1,
                                  kpts=adapted_kptjs)
            for k, ji in enumerate(adapted_ji_idx):
                ovlp[k] = lib.pack_tril(ovlp[k])
        else:
            aosym = 's1'
            nao_pair = nao**2

        mem_now = lib.current_memory()[0]
        log.debug2('memory = %s', mem_now)
        max_memory = max(2000, mydf.max_memory - mem_now)
        # nkptj for 3c-coulomb arrays plus 1 Lpq array
        buflen = min(
            max(int(max_memory * .6 * 1e6 / 16 / naux / (nkptj + 1)), 1),
            nao_pair)
        shranges = _guess_shell_ranges(cell, buflen, aosym)
        buflen = max([x[2] for x in shranges])
        # +1 for a pqkbuf
        if aosym == 's2':
            Gblksize = max(
                16, int(max_memory * .2 * 1e6 / 16 / buflen / (nkptj + 1)))
        else:
            Gblksize = max(
                16, int(max_memory * .4 * 1e6 / 16 / buflen / (nkptj + 1)))
        Gblksize = min(Gblksize, ngs, 16384)
        pqkRbuf = numpy.empty(buflen * Gblksize)
        pqkIbuf = numpy.empty(buflen * Gblksize)
        # buf for ft_aopair
        buf = numpy.zeros((nkptj, buflen * Gblksize), dtype=numpy.complex128)

        col1 = 0
        for istep, sh_range in enumerate(shranges):
            log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \
                       istep+1, len(shranges), *sh_range)
            bstart, bend, ncol = sh_range
            col0, col1 = col1, col1 + ncol
            j3cR = []
            j3cI = []
            for k, idx in enumerate(adapted_ji_idx):
                v = fuse(numpy.asarray(feri['j3c/%d' % idx][:, col0:col1]))
                if is_zero(kpt):
                    for i, c in enumerate(vbar):
                        if c != 0:
                            v[i] -= c * ovlp[k][col0:col1]
                j3cR.append(numpy.asarray(v.real, order='C'))
                if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                    j3cI.append(None)
                else:
                    j3cI.append(numpy.asarray(v.imag, order='C'))
                v = None

            if aosym == 's2':
                shls_slice = (bstart, bend, 0, bend)
                for p0, p1 in lib.prange(0, ngs, Gblksize):
                    ft_ao._ft_aopair_kpts(cell,
                                          Gv[p0:p1],
                                          shls_slice,
                                          aosym,
                                          b,
                                          gxyz[p0:p1],
                                          Gvbase,
                                          kpt,
                                          adapted_kptjs,
                                          out=buf)
                    nG = p1 - p0
                    for k, ji in enumerate(adapted_ji_idx):
                        aoao = numpy.ndarray((nG, ncol),
                                             dtype=numpy.complex128,
                                             order='F',
                                             buffer=buf[k])
                        pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf)
                        pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf)
                        pqkR[:] = aoao.real.T
                        pqkI[:] = aoao.imag.T
                        aoao[:] = 0
                        lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1)
                        lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1)
                        if not (is_zero(kpt)
                                and gamma_point(adapted_kptjs[k])):
                            lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1)
                            lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k], 1)
            else:
                shls_slice = (bstart, bend, 0, cell.nbas)
                ni = ncol // nao
                for p0, p1 in lib.prange(0, ngs, Gblksize):
                    ft_ao._ft_aopair_kpts(cell,
                                          Gv[p0:p1],
                                          shls_slice,
                                          aosym,
                                          b,
                                          gxyz[p0:p1],
                                          Gvbase,
                                          kpt,
                                          adapted_kptjs,
                                          out=buf)
                    nG = p1 - p0
                    for k, ji in enumerate(adapted_ji_idx):
                        aoao = numpy.ndarray((nG, ni, nao),
                                             dtype=numpy.complex128,
                                             order='F',
                                             buffer=buf[k])
                        pqkR = numpy.ndarray((ni, nao, nG), buffer=pqkRbuf)
                        pqkI = numpy.ndarray((ni, nao, nG), buffer=pqkIbuf)
                        pqkR[:] = aoao.real.transpose(1, 2, 0)
                        pqkI[:] = aoao.imag.transpose(1, 2, 0)
                        aoao[:] = 0
                        pqkR = pqkR.reshape(-1, nG)
                        pqkI = pqkI.reshape(-1, nG)
                        zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T, -1,
                               j3cR[k], j3cI[k], 1)

            naux0 = nauxs[uniq_kptji_id]
            for k, ji in enumerate(adapted_ji_idx):
                if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                    v = j3cR[k]
                else:
                    v = j3cR[k] + j3cI[k] * 1j
                if j2c[uniq_kptji_id][0] == 'CD':
                    v = scipy.linalg.solve_triangular(j2c[uniq_kptji_id][1],
                                                      v,
                                                      lower=True,
                                                      overwrite_b=True)
                else:
                    v = lib.dot(j2c[uniq_kptji_id][1], v)
                feri['j3c/%d' % ji][:naux0, col0:col1] = v

        naux0 = nauxs[uniq_kptji_id]
        for k, ji in enumerate(adapted_ji_idx):
            v = feri['j3c/%d' % ji][:naux0]
            del (feri['j3c/%d' % ji])
            feri['j3c/%d' % ji] = v

    for k, kpt in enumerate(uniq_kpts):
        make_kpt(k)

    feri.close()
Exemple #9
0
def _make_j3c(mydf, cell, auxcell, kptij_lst):
    t1 = (time.clock(), time.time())
    log = logger.Logger(mydf.stdout, mydf.verbose)
    max_memory = max(2000, mydf.max_memory-lib.current_memory()[0])
    fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell)
    if mydf.metric.upper() != 'J':
        outcore.aux_e2(cell, fused_cell, mydf._cderi, 'cint3c2e_sph',
                       kptij_lst=kptij_lst, dataname='j3c', max_memory=max_memory)
    t1 = log.timer_debug1('3c2e', *t1)

    nao = cell.nao_nr()
    naux = auxcell.nao_nr()
    gs = mydf.gs
    Gv, Gvbase, kws = cell.get_Gv_weights(gs)
    b = cell.reciprocal_vectors()
    gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase])
    ngs = gxyz.shape[0]

    kptis = kptij_lst[:,0]
    kptjs = kptij_lst[:,1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    # j2c ~ (-kpt_ji | kpt_ji)
    j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts)
    kLRs = []
    kLIs = []
    for k, kpt in enumerate(uniq_kpts):
        aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T
        aoaux = fuse(aoaux)
        coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs))
        kLR = (aoaux.real * coulG).T
        kLI = (aoaux.imag * coulG).T
        if not kLR.flags.c_contiguous: kLR = lib.transpose(kLR.T)
        if not kLI.flags.c_contiguous: kLI = lib.transpose(kLI.T)

        j2c[k] = fuse(fuse(j2c[k]).T).T.copy()
        if is_zero(kpt):  # kpti == kptj
            j2c[k] -= lib.dot(kLR.T, kLR)
            j2c[k] -= lib.dot(kLI.T, kLI)
        else:
             # aoaux ~ kpt_ij, aoaux.conj() ~ kpt_kl
            j2cR, j2cI = zdotCN(kLR.T, kLI.T, kLR, kLI)
            j2c[k] -= j2cR + j2cI * 1j

        kLR *= coulG.reshape(-1,1)
        kLI *= coulG.reshape(-1,1)
        kLRs.append(kLR)
        kLIs.append(kLI)
        aoaux = kLR = kLI = j2cR = j2cI = coulG = None

    feri = h5py.File(mydf._cderi)
    log.debug2('memory = %s', lib.current_memory()[0])

    # Expand approx Lpq for aosym='s1'.  The approx Lpq are all in aosym='s2' mode
    if mydf.approx_sr_level > 0 and len(kptij_lst) > 1:
        Lpq_fake = _fake_Lpq_kpts(mydf, feri, naux, nao)

    def save(label, dat, col0, col1):
        nrow = dat.shape[0]
        feri[label][:nrow,col0:col1] = dat

    def make_kpt(uniq_kptji_id):  # kpt = kptj - kpti
        kpt = uniq_kpts[uniq_kptji_id]
        log.debug1('kpt = %s', kpt)
        adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0]
        adapted_kptjs = kptjs[adapted_ji_idx]
        nkptj = len(adapted_kptjs)
        log.debug1('adapted_ji_idx = %s', adapted_ji_idx)
        kLR = kLRs[uniq_kptji_id]
        kLI = kLIs[uniq_kptji_id]

        if is_zero(kpt):  # kpti == kptj
            aosym = 's2'
            nao_pair = nao*(nao+1)//2

            vbar = fuse(mydf.auxbar(fused_cell))
            ovlp = cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs)
            for k, ji in enumerate(adapted_ji_idx):
                ovlp[k] = lib.pack_tril(ovlp[k])
        else:
            aosym = 's1'
            nao_pair = nao**2

        mem_now = lib.current_memory()[0]
        log.debug2('memory = %s', mem_now)
        max_memory = max(2000, mydf.max_memory-mem_now)
        # nkptj for 3c-coulomb arrays plus 1 Lpq array
        buflen = min(max(int(max_memory*.6*1e6/16/naux/(nkptj+1)), 1), nao_pair)
        shranges = pyscf.df.outcore._guess_shell_ranges(cell, buflen, aosym)
        buflen = max([x[2] for x in shranges])
        # +1 for a pqkbuf
        if aosym == 's2':
            Gblksize = max(16, int(max_memory*.2*1e6/16/buflen/(nkptj+1)))
        else:
            Gblksize = max(16, int(max_memory*.4*1e6/16/buflen/(nkptj+1)))
        Gblksize = min(Gblksize, ngs, 16384)
        pqkRbuf = numpy.empty(buflen*Gblksize)
        pqkIbuf = numpy.empty(buflen*Gblksize)
        # buf for ft_aopair
        buf = numpy.zeros((nkptj,buflen*Gblksize), dtype=numpy.complex128)

        col1 = 0
        for istep, sh_range in enumerate(shranges):
            log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \
                       istep+1, len(shranges), *sh_range)
            bstart, bend, ncol = sh_range
            col0, col1 = col1, col1+ncol
            j3cR = []
            j3cI = []
            for k, idx in enumerate(adapted_ji_idx):
                v = fuse(numpy.asarray(feri['j3c/%d'%idx][:,col0:col1]))

                if mydf.approx_sr_level == 0:
                    Lpq = numpy.asarray(feri['Lpq/%d'%idx][:,col0:col1])
                elif aosym == 's2':
                    Lpq = numpy.asarray(feri['Lpq/0'][:,col0:col1])
                else:
                    Lpq = numpy.asarray(Lpq_fake[:,col0:col1])
                lib.dot(j2c[uniq_kptji_id], Lpq, -.5, v, 1)
                if is_zero(kpt):
                    for i, c in enumerate(vbar):
                        if c != 0:
                            v[i] -= c * ovlp[k][col0:col1]

                j3cR.append(numpy.asarray(v.real, order='C'))
                if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                    j3cI.append(None)
                else:
                    j3cI.append(numpy.asarray(v.imag, order='C'))
            v = Lpq = None
            log.debug3('  istep, k = %d %d  memory = %s',
                       istep, k, lib.current_memory()[0])

            if aosym == 's2':
                shls_slice = (bstart, bend, 0, bend)
                for p0, p1 in lib.prange(0, ngs, Gblksize):
                    ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym,
                                          b, gxyz[p0:p1], Gvbase, kpt,
                                          adapted_kptjs, out=buf)
                    nG = p1 - p0
                    for k, ji in enumerate(adapted_ji_idx):
                        aoao = numpy.ndarray((nG,ncol), dtype=numpy.complex128,
                                             order='F', buffer=buf[k])
                        pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf)
                        pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf)
                        pqkR[:] = aoao.real.T
                        pqkI[:] = aoao.imag.T
                        aoao[:] = 0
                        lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1)
                        lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1)
                        if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])):
                            lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1)
                            lib.dot(kLI[p0:p1].T, pqkR.T,  1, j3cI[k], 1)
                    log.debug3('  p0:p1 = %d:%d  memory = %s',
                               p0, p1, lib.current_memory()[0])
            else:
                shls_slice = (bstart, bend, 0, cell.nbas)
                ni = ncol // nao
                for p0, p1 in lib.prange(0, ngs, Gblksize):
                    ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym,
                                          b, gxyz[p0:p1], Gvbase, kpt,
                                          adapted_kptjs, out=buf)
                    nG = p1 - p0
                    for k, ji in enumerate(adapted_ji_idx):
                        aoao = numpy.ndarray((nG,ni,nao), dtype=numpy.complex128,
                                             order='F', buffer=buf[k])
                        pqkR = numpy.ndarray((ni,nao,nG), buffer=pqkRbuf)
                        pqkI = numpy.ndarray((ni,nao,nG), buffer=pqkIbuf)
                        pqkR[:] = aoao.real.transpose(1,2,0)
                        pqkI[:] = aoao.imag.transpose(1,2,0)
                        aoao[:] = 0
                        pqkR = pqkR.reshape(-1,nG)
                        pqkI = pqkI.reshape(-1,nG)
                        zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T,
                               -1, j3cR[k], j3cI[k], 1)
                    log.debug3('  p0:p1 = %d:%d  memory = %s',
                               p0, p1, lib.current_memory()[0])

            for k, ji in enumerate(adapted_ji_idx):
                if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                    save('j3c/%d'%ji, j3cR[k], col0, col1)
                else:
                    save('j3c/%d'%ji, j3cR[k]+j3cI[k]*1j, col0, col1)


    for k, kpt in enumerate(uniq_kpts):
        make_kpt(k)

    feri.close()
Exemple #10
0
def build_Lpq_pbc(mydf, auxcell, kptij_lst):
    '''Fitting coefficients for auxiliary functions'''
    kptis = kptij_lst[:,0]
    kptjs = kptij_lst[:,1]
    kpts_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpts_ji)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]))
    if mydf.metric.upper() == 'S':
        outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_sph',
                       kptij_lst=kptij_lst, dataname='Lpq',
                       max_memory=max_memory)
        s_aux = auxcell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=uniq_kpts)
    elif mydf.metric.upper() == 'T':
        outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_p2_sph',
                       kptij_lst=kptij_lst, dataname='Lpq', max_memory=max_memory)
        s_aux = [x*2 for x in auxcell.pbc_intor('cint1e_kin_sph', hermi=1, kpts=uniq_kpts)]
    elif mydf.metric.upper() == 'J':
        fused_cell, fuse = fuse_auxcell(mydf, auxcell)
        outcore.aux_e2(mydf.cell, fused_cell, mydf._cderi, 'cint3c2e_sph',
                       kptij_lst=kptij_lst, dataname='j3c', max_memory=max_memory)
        vbar = fuse(mydf.auxbar(fused_cell))
        with h5py.File(mydf._cderi) as f:
            f['Lpq-kptij'] = kptij_lst
            for k_uniq, kpt_uniq in enumerate(uniq_kpts):
                adapted_ji_idx = numpy.where(uniq_inverse == k_uniq)[0]
                adapted_kptjs = kptjs[adapted_ji_idx]
                if is_zero(kpt_uniq):
                    ovlp = mydf.cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs)
                    for k, ji in enumerate(adapted_ji_idx):
                        ovlp[k] = lib.pack_tril(ovlp[k])
                for k, idx in enumerate(adapted_ji_idx):
                    v = fuse(numpy.asarray(f['j3c/%d'%idx]))
                    if is_zero(kpt_uniq):
                        for i, c in enumerate(vbar):
                            if c != 0:
                                v[i] -= c * ovlp[k]
                    f['Lpq/%d'%idx] = v
        v = ovlp = vbar = None

        j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts)
        for k, kpt in enumerate(uniq_kpts):
            j2c[k] = fuse(fuse(j2c[k]).T).T.copy()
        s_aux = j2c

#    else: # T+S
#        outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_sph',
#                       kptij_lst=kptij_lst, dataname='Lpq_s',
#                       max_memory=max_memory)
#        outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_p2_sph',
#                       kptij_lst=kptij_lst, dataname='Lpq',
#                       max_memory=max_memory)
#        with h5py.File(mydf._cderi) as f:
#            for k in range(len(kptij_lst)):
#                f['Lpq/%d'%k][:] = f['Lpq/%d'%k].value + f['Lpq_s/%d'%k].value
#                del(f['Lpq_s/%d'%k])
#        s_aux = auxcell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=uniq_kpts)
#        s_aux = [x+y*2 for x,y in zip(s_aux, auxcell.pbc_intor('cint1e_kin_sph', hermi=1, kpts=uniq_kpts))]

    try:
        s_aux = [scipy.linalg.cho_factor(x) for x in s_aux]
    except scipy.linalg.LinAlgError:
        eigs = [scipy.linalg.eigh(x)[0] for x in s_aux]
        conds = [x[-1]/max(1e-16, x[0]) for x in eigs]
        n = eigs[0].size
        shift = [0] * len(s_aux)
        for i, x in enumerate(s_aux):
            if conds[i] > 1e15:
                shift[i] = max(abs(eigs[i][0])*2, eigs[i][-1]*1e-18)
                x += numpy.eye(n) * shift[i]
        logger.warn(mydf, 'Ill condition number %s found in metric %s.\n'
                    'Level shift %s is applied.',
                    conds, mydf.metric, shift)
        s_aux = [scipy.linalg.cho_factor(x) for x in s_aux]

    max_memory = mydf.max_memory - lib.current_memory()[0]
    naux = auxcell.nao_nr()
    blksize = max(int(max_memory*.5*1e6/16/naux/mydf.blockdim), 1) * mydf.blockdim
    with h5py.File(mydf._cderi) as feri:
        for k, where in enumerate(uniq_inverse):
            s_k = s_aux[where]
            key = 'Lpq/%d' % k
            Lpq = feri[key]
            nao_pair = Lpq.shape[1]
            for p0, p1 in lib.prange(0, nao_pair, blksize):
                Lpq[:,p0:p1] = scipy.linalg.cho_solve(s_k, Lpq[:,p0:p1])