Exemple #1
0
    def __call__(self,
                 model_driver,
                 nramp_ss: bool = False,
                 dramp_ss=None,
                 nprocs=-1):
        """Initializes the NWM data.
        Used by :class:`pyschism.driver.ModelDriver`

        Will pick the "best" data source based on start date and rnday.
        The are fringe cases not yet covered, for example when the data spans
        more than 1 data source.
        """
        super().__init__(model_driver.param.opt.start_date,
                         model_driver.param.core.rnday)
        logger.info('Initializing NationalWaterModel data.')
        pairings = NWMElementPairings(model_driver.model_domain.hgrid)

        # start_date = model_driver.param.opt.start_date
        # rnday = model_driver.param.core.rnday

        # forecast
        if self.start_date >= pivot_time() - timedelta(days=30):
            logger.info('Fetching NWM data.')
            # (self._pairings, h0, nprocs)
            inventory = AWSDataInventory(start_date=self.start_date,
                                         rnday=self.rnday,
                                         product='medium_range_mem1',
                                         verbose=False)

            logger.info('Launching streamflow lookup...')
            source_indexes, sinks_indexes = inventory.get_nc_pairing_indexes(
                pairings)
            start = time()
            with Pool(processes=cpu_count()) as pool:
                sources = pool.starmap(streamflow_lookup,
                                       [(file, source_indexes)
                                        for file in inventory.files])
                sinks = pool.starmap(streamflow_lookup,
                                     [(file, sinks_indexes)
                                      for file in inventory.files])
            pool.join()
            logger.info(f'streamflow lookup took {time()-start}...')

            # Pass NWM data to Hydrology class.
            logging.info('Generating per-element hydrologic timeseries...')
            start = time()
            hydro = Hydrology(self.start_date, self.rnday)
            for i, file in enumerate(inventory.files):
                nc = Dataset(file)
                _time = localize_datetime(
                    datetime.strptime(nc.model_output_valid_time,
                                      "%Y-%m-%d_%H:%M:%S"))
                for j, element_id in enumerate(pairings.sources.keys()):
                    hydro.add_data(_time, element_id, sources[i][j], -9999, 0.)
                for k, element_id in enumerate(pairings.sinks.keys()):
                    hydro.add_data(_time, element_id, -sinks[i][k])
            logging.info('Generating per-element hydrologic timeseries took '
                         f'{time() - start}.')

        # hindcast
        else:
            raise NotImplementedError('Hindcast is not implemented 30 days.')

        # aggregate timeseries
        if self.aggregation_radius is not None:
            aggregation_radius = float(self.aggregation_radius)
            logging.info('Aggregating hydrology timeseries/elements using a '
                         f'radius of {aggregation_radius} meters.')
            start = time()
            hydro.aggregate_by_radius(model_driver.model_domain.hgrid,
                                      aggregation_radius)
            logging.info(f'Aggregating NWM elements took {time() - start}.')

        # turn 'on' the source/sink system in SCHISM.
        model_driver.param.opt.if_source = 1

        # set the ramps if applicable, no ramp by default.
        if int(nramp_ss) != 0:
            # nramp_ss = 1 # needed if if_source=1; ramp-up flag for
            # source/sinks
            model_driver.param.opt.nramp_ss = nramp_ss
            # dramp_ss = 2 # needed if if_source=1; ramp-up period in days
            if dramp_ss is not None:
                model_driver.param.opt.dramp_ss = dramp_ss
Exemple #2
0
    def _fetch_data(self):

        # this needs to be checked if there is no "zero" alignment
        requested_time = pivot_time(self.start_date)

        # This download here could be more robust. Right now it tries the
        # "nowcast" first and since it is expected to fail (NWM is 6 hours
        # offset from nowcast) then immediately downloads the previous nowcast.
        # This has been kept like this as a reminder that the "nowcast" never
        # exists for NWM, but this is not true for other models with shorter
        # lags (for example GFS).
        nwm_time = requested_time.strftime('%Y%m%d')
        res = self.s3.list_objects_v2(Bucket=self.bucket,
                                      Delimiter='/',
                                      Prefix=f'nwm.{nwm_time}/{self.product}/')

        if 'Contents' in res:
            # contents will be empty when t00z is called.
            data = list(
                reversed(
                    sorted([
                        data['Key'] for data in res['Contents']
                        if 'channel' in data['Key']
                    ])))
        else:
            data = []

        # In reality the previous will always fail, so we need to get the pivot
        # time
        nwm_time = (requested_time - timedelta(days=1)).strftime('%Y%m%d')
        res = self.s3.list_objects_v2(Bucket=self.bucket,
                                      Delimiter='/',
                                      Prefix=f'nwm.{nwm_time}/{self.product}/')

        data.extend(
            list(
                reversed(
                    sorted([
                        data['Key'] for data in res['Contents']
                        if 'channel' in data['Key']
                    ]))))

        nearest_cycle = int(6 * np.floor(requested_time.hour / 6))
        previous_cycle = (nearest_cycle - 6) % 24

        if f't{nearest_cycle:02d}z' not in data[0] \
                and f't{previous_cycle:02d}z' in data[0]:
            if self.fallback is True:
                warnings.warn(
                    f'NWM data for cycle t{nearest_cycle:02d}z is not yet '
                    'on the server, defaulting to previous cycle.')
            else:
                raise IOError('Unknown error while fetching NWM data.')

        for d in data:

            base_date_str = f'{d.split("/")[0].split(".")[-1]}'
            timedelta_str = d.split('channel_rt_1.')[-1].split('.')[0].strip(
                'f')
            file_datetime = datetime.strptime(base_date_str, '%Y%m%d') \
                + timedelta(hours=int(d.split('.')[2].strip('tz'))) \
                + timedelta(hours=float(timedelta_str))

            if file_datetime in self._files:
                file = self._files[file_datetime]
                if file is None:
                    filename = pathlib.Path(self.tmpdir.name) / d
                    filename.parent.mkdir(parents=True, exist_ok=True)
                    with open(filename, 'wb') as f:
                        logger.info(f'Downloading file {d}.')
                        self.s3.download_fileobj(self.bucket, d, f)
                    self._files[file_datetime] = filename

        for dt, data in self._files.items():
            if data is None:
                raise IOError(f'No NWM data for time {str(dt)}.')
Exemple #3
0
 def pivot_time(self):
     if not hasattr(self, '_pivot_time'):
         self._pivot_time = pivot_time()
     return self._pivot_time
Exemple #4
0
    def fetch_data(
            self,
            start_date: datetime = None,
            rnday: Union[float, timedelta] = 4,
            air: bool = True,
            prc: bool = True,
            rad: bool = True,
            bbox: Bbox = None,
    ):
        """Fetches HRRR data from NOMADS server. """
        logger.info('Fetching HRRR data.')
        self.start_date = nearest_cycle_date() if start_date is None else \
            localize_datetime(start_date).astimezone(pytz.utc)
        self.rnday = rnday if isinstance(rnday, timedelta) else \
            timedelta(days=rnday)
        inventory = HRRRInventory(
            self.start_date,
            self.rnday + self.output_interval,
            bbox
        )
        nx_grid, ny_grid = inventory.xy_grid()
        if air is True:
            with Dataset(
                self.tmpdir /
                f"air_{inventory.product}_"
                f"{str(self.start_date)}.nc",
                'w', format='NETCDF3_CLASSIC'
                    ) as dst:

                # global attributes
                dst.setncatts({"Conventions": "CF-1.0"})
                # dimensions
                dst.createDimension('nx_grid', nx_grid.shape[1])
                dst.createDimension('ny_grid', ny_grid.shape[0])
                dst.createDimension('time', None)
                # variables
                # lon
                dst.createVariable('lon', 'f4', ('ny_grid', 'nx_grid'))
                dst['lon'].long_name = "Longitude"
                dst['lon'].standard_name = "longitude"
                dst['lon'].units = "degrees_east"
                dst['lon'][:] = nx_grid
                # lat
                dst.createVariable('lat', 'f4', ('ny_grid', 'nx_grid'))
                dst['lat'].long_name = "Latitude"
                dst['lat'].standard_name = "latitude"
                dst['lat'].units = "degrees_north"
                dst['lat'][:] = ny_grid
                # time
                dst.createVariable('time', 'f4', ('time',))
                dst['time'].long_name = 'Time'
                dst['time'].standard_name = 'time'
                date = pivot_time(self.start_date)
                dst['time'].units = f'days since {date.year}-{date.month}'\
                                    f'-{date.day} 00:00'\
                                    f'{date.tzinfo}'
                dst['time'].base_date = (date.year, date.month, date.day, 0)
                dst['time'][:] = inventory.get_sflux_timevector()

                for var in AirComponent.var_types:
                    dst.createVariable(
                        var,
                        'f4',
                        ('time', 'ny_grid', 'nx_grid')
                    )
                    logger.info(f'Put field {var}')
                    inventory.put_sflux_field(getattr(self, f'{var}_name'), dst, var)

                # prmsl
                dst['prmsl'].long_name = "Pressure reduced to MSL"
                dst['prmsl'].standard_name = "air_pressure_at_sea_level"
                dst['prmsl'].units = "Pa"

                # spfh
                dst['spfh'].long_name = "Surface Specific Humidity "\
                                        "(2m AGL)"
                dst['spfh'].standard_name = "specific_humidity"
                dst['spfh'].units = "1"

                # stmp
                dst['stmp'].long_name = "Surface Air Temperature (2m AGL)"
                dst['stmp'].standard_name = "air_temperature"
                dst['stmp'].units = "K"

                # uwind
                dst['uwind'].long_name = "Surface Eastward Air Velocity "\
                    "(10m AGL)"
                dst['uwind'].standard_name = "eastward_wind"
                dst['uwind'].units = "m/s"

                # vwind
                dst['vwind'].long_name = "Surface Northward Air Velocity "\
                    "(10m AGL)"
                dst['vwind'].standard_name = "northward_wind"
                dst['vwind'].units = "m/s"

        if prc is True:
            with Dataset(
                self.tmpdir /
                f"prc_{inventory.product}_"
                f"{str(self.start_date)}.nc",
                'w', format='NETCDF3_CLASSIC'
                    ) as dst:

                # global attributes
                dst.setncatts({"Conventions": "CF-1.0"})
                # dimensions
                dst.createDimension('nx_grid', nx_grid.shape[1])
                dst.createDimension('ny_grid', ny_grid.shape[0])
                dst.createDimension('time', None)
                # lon
                dst.createVariable('lon', 'f4', ('ny_grid', 'nx_grid'))
                dst['lon'].long_name = "Longitude"
                dst['lon'].standard_name = "longitude"
                dst['lon'].units = "degrees_east"
                dst['lon'][:] = nx_grid
                # lat
                dst.createVariable('lat', 'f4', ('ny_grid', 'nx_grid'))
                dst['lat'].long_name = "Latitude"
                dst['lat'].standard_name = "latitude"
                dst['lat'].units = "degrees_north"
                dst['lat'][:] = ny_grid
                # time
                dst.createVariable('time', 'f4', ('time',))
                dst['time'].long_name = 'Time'
                dst['time'].standard_name = 'time'
                date = pivot_time(self.start_date)
                dst['time'].units = f'days since {date.year}-{date.month}'\
                                    f'-{date.day} 00:00'\
                                    f'{date.tzinfo}'
                dst['time'].base_date = (date.year, date.month, date.day, 0)
                dst['time'][:] = inventory.get_sflux_timevector()

                for var in PrcComponent.var_types:
                    dst.createVariable(var, float,
                                       ('time', 'ny_grid', 'nx_grid'))
                    logger.info(f'Put field {var}')
                    inventory.put_sflux_field(getattr(self, f'{var}_name'), dst, var)
                # prate
                dst['prate'].long_name = "Surface Precipitation Rate"
                dst['prate'].standard_name = "air_pressure_at_sea_level"
                dst['prate'].units = "kg/m^2/s"

        if rad is True:
            with Dataset(
                self.tmpdir /
                f"rad_{inventory.product}_"
                f"{str(self.start_date)}.nc",
                'w', format='NETCDF3_CLASSIC'
                    ) as dst:
                # global attributes
                dst.setncatts({"Conventions": "CF-1.0"})
                # dimensions
                dst.createDimension('nx_grid', nx_grid.shape[1])
                dst.createDimension('ny_grid', ny_grid.shape[0])
                dst.createDimension('time', None)
                # lon
                dst.createVariable('lon', 'f4', ('ny_grid', 'nx_grid'))
                dst['lon'].long_name = "Longitude"
                dst['lon'].standard_name = "longitude"
                dst['lon'].units = "degrees_east"
                dst['lon'][:] = nx_grid
                # lat
                dst.createVariable('lat', 'f4', ('ny_grid', 'nx_grid'))
                dst['lat'].long_name = "Latitude"
                dst['lat'].standard_name = "latitude"
                dst['lat'].units = "degrees_north"
                dst['lat'][:] = ny_grid
                # time
                dst.createVariable('time', 'f4', ('time',))
                dst['time'].long_name = 'Time'
                dst['time'].standard_name = 'time'
                date = pivot_time(self.start_date)
                dst['time'].units = f'days since {date.year}-{date.month}'\
                                    f'-{date.day} 00:00'\
                                    f'{date.tzinfo}'
                dst['time'].base_date = (date.year, date.month, date.day, 0)
                dst['time'][:] = inventory.get_sflux_timevector()

                for var in RadComponent.var_types:
                    dst.createVariable(var, float,
                                       ('time', 'ny_grid', 'nx_grid'))
                    logger.info(f'Put field {var}')
                    inventory.put_sflux_field(getattr(self, f'{var}_name'), dst, var)

                # dlwrf
                dst['dlwrf'].long_name = "Downward Long Wave Radiation "\
                                         "Flux"
                dst['dlwrf'].standard_name = "surface_downwelling_"\
                                             "longwave_flux_in_air"
                dst['dlwrf'].units = "W/m^2"

                # dswrf
                dst['dswrf'].long_name = "Downward Short Wave Radiation "\
                                         "Flux"
                dst['dswrf'].standard_name = "surface_downwelling_"\
                                             "shortwave_flux_in_air"
                dst['dswrf'].units = "W/m^2"

        self.resource = self.tmpdir
        self.air = AirComponent(self.fields)
        self.prc = PrcComponent(self.fields)
        self.rad = RadComponent(self.fields)
Exemple #5
0
 def get_sflux_timevector(self):
     timevec = list(self._files.keys())
     _pivot_time = pivot_time(np.min(timevec))
     return [(localize_datetime(x) - _pivot_time) / timedelta(days=1)
             for x in timevec]