def test_colnames_as_callable(self):
     """Test if column names work when specified as a callable."""
     schema = deepcopy(self.basespecs['iris'])
     translator = lambda x: "_".join([s.lower() for s in x.split()])
     schema['column_names'] = translator
     ideal = {'column_names': translator}
     validator = SchemaValidator(specification=schema)
     validator.get_parser_args()
     self.assertKwargsEqual(validator.df_rules, ideal)
 def test_colnames_as_callable(self):
     """Test if column names work when specified as a callable."""
     schema = deepcopy(self.basespecs['iris'])
     translator = lambda x: "_".join([s.lower() for s in x.split()])
     schema['column_names'] = translator
     ideal = {'column_names': translator}
     validator = SchemaValidator(specification=schema)
     validator.get_parser_args()
     self.assertKwargsEqual(validator.df_rules, ideal)
 def test_colnames_as_dict(self):
     """Test if the column names work when specified as a dictionary."""
     schema = deepcopy(self.basespecs['iris'])
     namemap = {'Sepal Length': 'slength', 'Sepal Width': 'swidth',
                'Petal Width': 'pwidth', 'Petal Length': 'plength',
                'Species': 'spcs'}
     schema['column_names'] = namemap
     ideal = {'column_names': namemap}
     validator = SchemaValidator(specification=schema)
     validator.get_parser_args()
     self.assertKwargsEqual(validator.df_rules, ideal)
 def test_colnames_as_dict(self):
     """Test if the column names work when specified as a dictionary."""
     schema = deepcopy(self.basespecs['iris'])
     namemap = {
         'Sepal Length': 'slength',
         'Sepal Width': 'swidth',
         'Petal Width': 'pwidth',
         'Petal Length': 'plength',
         'Species': 'spcs'
     }
     schema['column_names'] = namemap
     ideal = {'column_names': namemap}
     validator = SchemaValidator(specification=schema)
     validator.get_parser_args()
     self.assertKwargsEqual(validator.df_rules, ideal)
 def test_exclude_columns(self):
     schema = deepcopy(self.basespecs['iris'])
     schema['exclude_columns'] = ['Sepal Length', 'Petal Width']
     validator = SchemaValidator(specification=schema)
     loaded = pd.read_csv(**validator.get_parser_args())
     self.assertItemsEqual(loaded.columns,
                           ['Petal Length', 'Sepal Width', 'Species'])
 def test_converter(self):
     """Test if the SeriesValidator properly applies converters."""
     schema = deepcopy(self.basespecs['iris'])
     schema['converters'] = {'Sepal Width': lambda x: int(float(x))}
     validator = SchemaValidator(specification=schema)
     filtered = pd.read_csv(**validator.get_parser_args())['Sepal Width']
     self.assertTrue(filtered.dtype == np.int)
    def test_multifile_dataset_schema(self):
        """Test if a dataset schema with multiple files works properly."""
        duplicate_iris_path = self.basespecs['iris']['path'].replace("iris",
                                                                     "iris2")
        # Copy the file
        dframe = pd.read_csv(self.basespecs['iris']['path'])
        dframe.to_csv(duplicate_iris_path, index=False)

        # Create the news chema
        schema = {'nrows': [150, 150], 'path': [duplicate_iris_path,
                  self.basespecs['iris']['path']]}
        for key, value in self.basespecs['iris'].iteritems():
            if key not in schema:
                schema[key] = value

        try:
            validator = SchemaValidator(specification=schema)
            self.assertTrue(validator.is_multifile)
            self.assertItemsEqual(validator.filepath, schema['path'])
            self.assertItemsEqual(validator.nrows, schema['nrows'])
            validated_args = validator.get_parser_args()
            self.assertTrue(isinstance(validated_args, list))
            self.assertEqual(len(validated_args), 2)
        finally:
            os.unlink(duplicate_iris_path)
 def test_converter(self):
     """Test if the SeriesValidator properly applies converters."""
     schema = deepcopy(self.basespecs['iris'])
     schema['converters'] = {'Sepal Width': lambda x: int(float(x))}
     validator = SchemaValidator(specification=schema)
     filtered = pd.read_csv(**validator.get_parser_args())['Sepal Width']
     self.assertTrue(filtered.dtype == np.int)
    def test_multifile_dataset_schema(self):
        """Test if a dataset schema with multiple files works properly."""
        duplicate_iris_path = self.basespecs['iris']['path'].replace("iris",
                                                                     "iris2")
        # Copy the file
        dframe = pd.read_csv(self.basespecs['iris']['path'])
        dframe.to_csv(duplicate_iris_path, index=False)

        # Create the news chema
        schema = {'nrows': [150, 150], 'path': [duplicate_iris_path,
                  self.basespecs['iris']['path']]}
        for key, value in self.basespecs['iris'].iteritems():
            if key not in schema:
                schema[key] = value

        try:
            validator = SchemaValidator(specification=schema)
            self.assertTrue(validator.is_multifile)
            self.assertItemsEqual(validator.filepath, schema['path'])
            self.assertItemsEqual(validator.nrows, schema['nrows'])
            validated_args = validator.get_parser_args()
            self.assertTrue(isinstance(validated_args, list))
            self.assertEqual(len(validated_args), 2)
        finally:
            os.unlink(duplicate_iris_path)
 def test_exclude_columns(self):
     schema = deepcopy(self.basespecs['iris'])
     schema['exclude_columns'] = ['Sepal Length', 'Petal Width']
     validator = SchemaValidator(specification=schema)
     loaded = pd.read_csv(**validator.get_parser_args())
     self.assertItemsEqual(loaded.columns,
                           ['Petal Length', 'Sepal Width', 'Species'])
 def test_random_rows_selection(self):
     """Test if the validator correctly produces the function argument
     required for selecting a range of rows from a dataset."""
     self.basespecs['iris']['nrows'] = {'range': [25, 75]}
     validator = SchemaValidator(specification=self.basespecs['iris'])
     parser_args = validator.get_parser_args()
     self.assertEqual(parser_args['skiprows'], 25)
     self.assertEqual(parser_args['nrows'], 50)
 def test_header(self):
     """Test if the header option works."""
     schema = deepcopy(self.basespecs['iris'])
     schema['header'] = 1
     validator = SchemaValidator(specification=schema)
     loaded = pd.read_csv(**validator.get_parser_args())
     self.assertItemsEqual(loaded.columns,
                           ['5.1', '3.5', '1.4', '0.2', 'setosa'])
 def test_header(self):
     """Test if the header option works."""
     schema = deepcopy(self.basespecs['iris'])
     schema['header'] = 1
     validator = SchemaValidator(specification=schema)
     loaded = pd.read_csv(**validator.get_parser_args())
     self.assertItemsEqual(loaded.columns,
                           ['5.1', '3.5', '1.4', '0.2', 'setosa'])
 def test_validator_specfile_name_iris(self):
     """Test if the validator works when providing specifle and name for the
     iris dataset.
     """
     validator = SchemaValidator(specfile=self.specfile, name="iris")
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_iris_parser_args)
 def test_index(self):
     """Test if specifying the index_col works."""
     specs = deepcopy(self.basespecs['iris'])
     index_col = "Species"
     specs['index_col'] = index_col
     validator = SchemaValidator(specification=specs)
     parser_args = validator.get_parser_args()
     self.assertItemsEqual(parser_args['index_col'], index_col)
 def test_validator_specfile_name_iris(self):
     """Test if the validator works when providing specifle and name for the
     iris dataset.
     """
     validator = SchemaValidator(specfile=self.specfile, name="iris")
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_iris_parser_args)
 def test_random_rows_selection(self):
     """Test if the validator correctly produces the function argument
     required for selecting a range of rows from a dataset."""
     self.basespecs['iris']['nrows'] = {'range': [25, 75]}
     validator = SchemaValidator(specification=self.basespecs['iris'])
     parser_args = validator.get_parser_args()
     self.assertEqual(parser_args['skiprows'], 25)
     self.assertEqual(parser_args['nrows'], 50)
 def test_parse_dates_list(self):
     """Test if arguments to `parse_dates` are put into a list."""
     specs = deepcopy(self.basespecs['person_activity'])
     specs['parse_dates'] = specs['parse_dates'][0]
     validator = SchemaValidator(specification=specs)
     parser_args = validator.get_parser_args()
     self.assertTrue(isinstance(parser_args['parse_dates'], list))
     df = pd.read_csv(**parser_args)
     self.assertEqual(df['date'].dtype, np.dtype('<M8[ns]'))
 def test_validator_with_specdict_iris(self):
     """Check if the validator works when only the specification is supplied
     as a dictionary for the iris dataset.
     """
     validator = SchemaValidator(specification=self.basespecs['iris'])
     self.assertFalse(validator.is_multifile)
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_iris_parser_args)
 def test_pandas_defaults_empty_specs(self):
     """Test if the validator falls back to pandas defaults for empty specs.
     """
     schema = dict(path=op.join(op.abspath(op.dirname(__file__)),
                                "testdata", "iris.csv"))
     validator = SchemaValidator(specification=schema)
     ideal = pd.read_csv(schema['path'])
     actual = pd.read_csv(**validator.get_parser_args())
     self.assertDataFrameEqual(ideal, actual)
 def test_validator_with_specdist_activity(self):
     """Check if the validator works when only the specification is supplied
     as a dictionary for the person activity dataset.
     """
     validator = SchemaValidator(
                            specification=self.basespecs['person_activity'])
     self.assertFalse(validator.is_multifile)
     validated = validator.get_parser_args()
     self.assertKwargsEqual(validated, self.ideal_activity_parser_args)
    def setUpClass(cls):
        cls.maxDiff = None
        with open(TEST_DATA_DICT, 'r') as fileobj:
            basespecs = yaml.load(fileobj, Loader=yaml.CLoader)
        # Fix the paths in basespecs
        for _, specs in basespecs.iteritems():
            rlpth = specs['path']
            specs['path'] = op.join(op.abspath(op.dirname(__file__)),
                                    rlpth)
        cls._basespecs = basespecs

        iris_validator = SchemaValidator(specification=cls._basespecs['iris'])
        pa_validator = SchemaValidator(
                               specification=cls._basespecs['person_activity'])
        iris_dframe = pd.read_csv(**iris_validator.get_parser_args())
        pa_dframe = pd.read_csv(**pa_validator.get_parser_args())
        cls.iris_dframe = iris_dframe
        cls.pa_dframe = pa_dframe
 def test_validator_specfile_name_activity(self):
     """Test if the validator works when providing specifle and name for the
     activity dataset.
     """
     validator = SchemaValidator(specfile=self.specfile,
                                 name="person_activity")
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_activity_parser_args)
    def setUpClass(cls):
        cls.maxDiff = None
        with open(TEST_DATA_DICT, 'r') as fileobj:
            basespecs = yaml.load(fileobj, Loader=Loader)
        # Fix the paths in basespecs
        for _, specs in basespecs.iteritems():
            rlpth = specs['path']
            specs['path'] = op.join(op.abspath(op.dirname(__file__)),
                                    rlpth)
        cls._basespecs = basespecs

        iris_validator = SchemaValidator(specification=cls._basespecs['iris'])
        pa_validator = SchemaValidator(
                               specification=cls._basespecs['person_activity'])
        iris_dframe = pd.read_csv(**iris_validator.get_parser_args())
        pa_dframe = pd.read_csv(**pa_validator.get_parser_args())
        cls.iris_dframe = iris_dframe
        cls.pa_dframe = pa_dframe
 def test_multiindex(self):
     """Test if validator accepts list of index columns for
     multiindexing."""
     specs = deepcopy(self.basespecs['person_activity'])
     index_cols = ['tag', 'sequence_name']
     specs['index_col'] = index_cols
     validator = SchemaValidator(specification=specs)
     parser_args = validator.get_parser_args()
     self.assertItemsEqual(parser_args['index_col'], index_cols)
 def test_colnames_as_list(self):
     """Test if the column names option works when provided as a list."""
     schema = deepcopy(self.basespecs['iris'])
     schema['header'] = 0
     ideal = ['a', 'b', 'c', 'd', 'e']
     schema['column_names'] = ideal
     validator = SchemaValidator(specification=schema)
     loaded = pd.read_csv(**validator.get_parser_args())
     self.assertItemsEqual(loaded.columns, ideal)
 def test_index(self):
     """Test if specifying the index_col works."""
     specs = deepcopy(self.basespecs['iris'])
     index_col = "Species"
     specs['index_col'] = index_col
     del specs['column_rules']['Species']
     validator = SchemaValidator(specification=specs)
     parser_args = validator.get_parser_args()
     self.assertItemsEqual(parser_args['index_col'], index_col)
 def test_pandas_defaults_empty_specs(self):
     """Test if the validator falls back to pandas defaults for empty specs.
     """
     schema = dict(path=op.join(op.abspath(op.dirname(__file__)),
                                "testdata", "iris.csv"))
     validator = SchemaValidator(specification=schema)
     ideal = pd.read_csv(schema['path'])
     actual = pd.read_csv(**validator.get_parser_args())
     self.assertDataFrameEqual(ideal, actual)
 def test_validator_with_specdist_activity(self):
     """Check if the validator works when only the specification is supplied
     as a dictionary for the person activity dataset.
     """
     validator = SchemaValidator(
                            specification=self.basespecs['person_activity'])
     self.assertFalse(validator.is_multifile)
     validated = validator.get_parser_args()
     self.assertKwargsEqual(validated, self.ideal_activity_parser_args)
 def test_multiindex(self):
     """Test if validator accepts list of index columns for
     multiindexing."""
     specs = deepcopy(self.basespecs['person_activity'])
     index_cols = ['tag', 'sequence_name']
     specs['index_col'] = index_cols
     validator = SchemaValidator(specification=specs)
     parser_args = validator.get_parser_args()
     self.assertItemsEqual(parser_args['index_col'], index_cols)
 def test_validator_with_specdict_iris(self):
     """Check if the validator works when only the specification is supplied
     as a dictionary for the iris dataset.
     """
     validator = SchemaValidator(specification=self.basespecs['iris'])
     self.assertFalse(validator.is_multifile)
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_iris_parser_args)
 def test_validator_specfile_name_activity(self):
     """Test if the validator works when providing specifle and name for the
     activity dataset.
     """
     validator = SchemaValidator(specfile=self.specfile,
                                 name="person_activity")
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_activity_parser_args)
 def test_parse_dates_list(self):
     """Test if arguments to `parse_dates` are put into a list."""
     specs = deepcopy(self.basespecs['person_activity'])
     specs['parse_dates'] = specs['parse_dates'][0]
     validator = SchemaValidator(specification=specs)
     parser_args = validator.get_parser_args()
     self.assertTrue(isinstance(parser_args['parse_dates'], list))
     df = pd.read_csv(**parser_args)
     self.assertEqual(df['date'].dtype, np.dtype('<M8[ns]'))
 def test_usecols(self):
     """Test if inferring the usecols argument works."""
     specs = deepcopy(self.basespecs['iris'])
     specs['use_columns'] = ['Petal Length', 'Sepal Width', 'Species']
     validator = SchemaValidator(specification=specs)
     df = pd.read_csv(**validator.get_parser_args())
     for colname in specs['use_columns']:
         self.assertIn(colname, df)
     self.assertNotIn("Petal Width", df)
     self.assertNotIn("Sepal Length", df)
     self.assertEqual(df.shape[1], 3)
 def test_usecols(self):
     """Test if inferring the usecols argument works."""
     specs = deepcopy(self.basespecs['iris'])
     specs['use_columns'] = ['Petal Length', 'Sepal Width', 'Species']
     validator = SchemaValidator(specification=specs)
     df = pd.read_csv(**validator.get_parser_args())
     for colname in specs['use_columns']:
         self.assertIn(colname, df)
     self.assertNotIn("Petal Width", df)
     self.assertNotIn("Sepal Length", df)
     self.assertEqual(df.shape[1], 3)
 def test_na_values(self):
     """Test if adding NA values in the schema works properly."""
     bad_iris_path = op.join(op.abspath(op.dirname(__file__)), "testdata",
                             "bad_iris.csv")
     schema = deepcopy(self.basespecs['iris'])
     schema['path'] = bad_iris_path
     schema['column_rules']['Species']['unique_values'].append('unknown')
     schema['column_rules']['Species']['na_values'] = ['unknown']
     validator = SchemaValidator(specification=schema)
     parser_args = validator.get_parser_args()
     self.assertDictEqual(parser_args.get("na_values"),
                          {'Species': ['unknown']})
 def test_na_values(self):
     """Test if adding NA values in the schema works properly."""
     bad_iris_path = op.join(op.abspath(op.dirname(__file__)), "testdata",
                             "bad_iris.csv")
     schema = deepcopy(self.basespecs['iris'])
     schema['path'] = bad_iris_path
     schema['column_rules']['Species']['unique_values'].append('unknown')
     schema['column_rules']['Species']['na_values'] = ['unknown']
     validator = SchemaValidator(specification=schema)
     parser_args = validator.get_parser_args()
     self.assertDictEqual(parser_args.get("na_values"),
                          {'Species': ['unknown']})
 def test_validator_with_specfile_spec(self):
     """Check if the validator works when the specfile and specification are
     both provided.
     """
     # This is necessary because the validator might have to write
     # specifications to the dictionary.
     validator = SchemaValidator(specification=self.basespecs['iris'],
                                 specfile=self.specfile)
     self.assertFalse(validator.is_multifile)
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_iris_parser_args)
    def setUpClass(cls):
        cls.maxDiff = None
        with open(TEST_DATA_DICT, 'r') as fileobj:
            basespecs = yaml.load(fileobj, Loader=Loader)
        # Fix the paths in basespecs
        for _, specs in basespecs.iteritems():
            rlpth = specs['path']
            specs['path'] = op.join(op.abspath(op.dirname(__file__)),
                                    rlpth)
        cls._basespecs = basespecs

        iris_validator = SchemaValidator(specification=cls._basespecs['iris'])
        pa_validator = SchemaValidator(
                               specification=cls._basespecs['person_activity'])
        iris_dframe = pd.read_csv(**iris_validator.get_parser_args())
        pa_dframe = pd.read_csv(**pa_validator.get_parser_args())
        cls.iris_dframe = iris_dframe
        cls.pa_dframe = pa_dframe
        cls.species_rules = {'unique_values': ['setosa', 'virginica',
                                               'versicolor'],
                             'drop_duplicates': False, 'drop_na': False}
 def test_validator_with_specfile_spec(self):
     """Check if the validator works when the specfile and specification are
     both provided.
     """
     # This is necessary because the validator might have to write
     # specifications to the dictionary.
     validator = SchemaValidator(specification=self.basespecs['iris'],
                                 specfile=self.specfile)
     self.assertFalse(validator.is_multifile)
     validated_parser_args = validator.get_parser_args()
     self.assertKwargsEqual(validated_parser_args,
                            self.ideal_iris_parser_args)
 def test_colnames_as_callable(self):
     translator = lambda x: "_".join([s.lower() for s in x.split()])
     self.basespecs['iris']['column_names'] = translator
     schema_val = SchemaValidator(specification=self.basespecs['iris'])
     parser_args = schema_val.get_parser_args()
     df = pd.read_csv(**parser_args)
     rules = {}
     rules.update(schema_val.df_rules)
     df_val = DataFrameValidator(data=df, rules=rules)
     data = df_val.clean()
     ideal = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
              'species']
     self.assertItemsEqual(data.columns, ideal)
 def test_colnames_as_list(self):
     """Test if the column names option works when provided as a list."""
     schema = deepcopy(self.basespecs['iris'])
     schema['header'] = 0
     ideal = ['a', 'b', 'c', 'd', 'e']
     schema['column_names'] = ideal
     validator = SchemaValidator(specification=schema)
     df = pd.read_csv(**validator.get_parser_args())
     rules = {}
     rules.update(validator.df_rules)
     df_val = DataFrameValidator(data=df, rules=rules)
     data = df_val.clean()
     self.assertItemsEqual(data.columns, ideal)
 def test_colnames_as_list(self):
     """Test if the column names option works when provided as a list."""
     schema = deepcopy(self.basespecs['iris'])
     schema['header'] = 0
     ideal = ['a', 'b', 'c', 'd', 'e']
     schema['column_names'] = ideal
     validator = SchemaValidator(specification=schema)
     df = pd.read_csv(**validator.get_parser_args())
     rules = {}
     rules.update(validator.df_rules)
     df_val = DataFrameValidator(data=df, rules=rules)
     data = df_val.clean()
     self.assertItemsEqual(data.columns, ideal)
    def setUpClass(cls):
        cls.maxDiff = None
        with open(TEST_DATA_DICT, 'r') as fileobj:
            basespecs = yaml.load(fileobj, Loader=Loader)
        # Fix the paths in basespecs
        for _, specs in basespecs.iteritems():
            rlpth = specs['path']
            specs['path'] = op.join(op.abspath(op.dirname(__file__)), rlpth)
        cls._basespecs = basespecs

        iris_validator = SchemaValidator(specification=cls._basespecs['iris'])
        pa_validator = SchemaValidator(
            specification=cls._basespecs['person_activity'])
        iris_dframe = pd.read_csv(**iris_validator.get_parser_args())
        pa_dframe = pd.read_csv(**pa_validator.get_parser_args())
        cls.iris_dframe = iris_dframe
        cls.pa_dframe = pa_dframe
        cls.species_rules = {
            'unique_values': ['setosa', 'virginica', 'versicolor'],
            'drop_duplicates': False,
            'drop_na': False
        }
 def test_colnames_as_dict(self):
     """Test if column names gotten from SchemaValidator are implemented."""
     namemap = {'Sepal Length': 'slength', 'Sepal Width': 'swidth',
                'Petal Width': 'pwidth', 'Petal Length': 'plength',
                'Species': 'spcs'}
     self.basespecs['iris']['column_names'] = namemap
     schema_val = SchemaValidator(specification=self.basespecs['iris'])
     parser_args = schema_val.get_parser_args()
     df = pd.read_csv(**parser_args)
     rules = {}
     rules.update(schema_val.df_rules)
     df_val = DataFrameValidator(data=df, rules=rules)
     data = df_val.clean()
     self.assertItemsEqual(data.columns, namemap.values())
 def test_colnames_as_callable(self):
     translator = lambda x: "_".join([s.lower() for s in x.split()])
     self.basespecs['iris']['column_names'] = translator
     schema_val = SchemaValidator(specification=self.basespecs['iris'])
     parser_args = schema_val.get_parser_args()
     df = pd.read_csv(**parser_args)
     rules = {}
     rules.update(schema_val.df_rules)
     df_val = DataFrameValidator(data=df, rules=rules)
     data = df_val.clean()
     ideal = [
         'sepal_length', 'sepal_width', 'petal_length', 'petal_width',
         'species'
     ]
     self.assertItemsEqual(data.columns, ideal)
 def test_colnames_as_dict(self):
     """Test if column names gotten from SchemaValidator are implemented."""
     namemap = {
         'Sepal Length': 'slength',
         'Sepal Width': 'swidth',
         'Petal Width': 'pwidth',
         'Petal Length': 'plength',
         'Species': 'spcs'
     }
     self.basespecs['iris']['column_names'] = namemap
     schema_val = SchemaValidator(specification=self.basespecs['iris'])
     parser_args = schema_val.get_parser_args()
     df = pd.read_csv(**parser_args)
     rules = {}
     rules.update(schema_val.df_rules)
     df_val = DataFrameValidator(data=df, rules=rules)
     data = df_val.clean()
     self.assertItemsEqual(data.columns, namemap.values())
 def test_global_na_values(self):
     """Test if specifying a global NA value for a dataset works."""
     tempdir = tempfile.mkdtemp()
     df = pd.DataFrame(np.random.rand(10, 10))
     ix = np.random.randint(0, df.shape[0], size=(5, ))
     ix = np.unique(ix)
     for i in xrange(ix.shape[0]):
         df.iloc[ix[i], ix[i]] = "foobar"
     fpath = op.join(tempdir, "test_na.csv")
     df.to_csv(fpath, index=False)
     schema = {'path': fpath, 'na_values': "foobar"}
     try:
         validator = SchemaValidator(specification=schema)
         parser_args = validator.get_parser_args()
         self.assertEqual(parser_args['na_values'], "foobar")
         df = pd.read_csv(**parser_args)
         self.assertEqual(pd.isnull(df).sum().sum(), ix.shape[0])
     finally:
         shutil.rmtree(tempdir)
 def test_global_na_values(self):
     """Test if specifying a global NA value for a dataset works."""
     tempdir = tempfile.mkdtemp()
     df = pd.DataFrame(np.random.rand(10, 10))
     ix = np.random.randint(0, df.shape[0], size=(5,))
     ix = np.unique(ix)
     for i in xrange(ix.shape[0]):
         df.iloc[ix[i], ix[i]] = "foobar"
     fpath = op.join(tempdir, "test_na.csv")
     df.to_csv(fpath, index=False)
     schema = {'path': fpath, 'na_values': "foobar"}
     try:
         validator = SchemaValidator(specification=schema)
         parser_args = validator.get_parser_args()
         self.assertEqual(parser_args['na_values'], "foobar")
         df = pd.read_csv(**parser_args)
         self.assertEqual(pd.isnull(df).sum().sum(), ix.shape[0])
     finally:
         shutil.rmtree(tempdir)
 def test_timestamp_cols_combine(self):
     """Test if the schema for combining datetime columns works."""
     tempdir = tempfile.mkdtemp()
     outpath = op.join(tempdir, "data.csv")
     rng = pd.date_range('1/1/2011', periods=72, freq='H')
     rng = [str(x).split() for x in rng]
     date = [x[0] for x in rng]
     time = [x[1] for x in rng]
     data = pd.DataFrame({'Date': date, 'Time': time,
                          'X': np.random.rand(len(date),)})
     data.to_csv(outpath, index=False)
     specs = dict(path=outpath, parse_dates={'Date_Time': ['Date', 'Time']})
     validator = SchemaValidator(specification=specs)
     try:
         loaded = pd.read_csv(**validator.get_parser_args())
         x = " ".join((date[0], time[0]))
         self.assertEqual(loaded['Date_Time'].dtype,
                          np.datetime64(x, 'ns').dtype)
     finally:
         shutil.rmtree(tempdir)
 def test_timestamp_cols_combine(self):
     """Test if the schema for combining datetime columns works."""
     tempdir = tempfile.mkdtemp()
     outpath = op.join(tempdir, "data.csv")
     rng = pd.date_range('1/1/2011', periods=72, freq='H')
     rng = [str(x).split() for x in rng]
     date = [x[0] for x in rng]
     time = [x[1] for x in rng]
     data = pd.DataFrame({
         'Date': date,
         'Time': time,
         'X': np.random.rand(len(date), )
     })
     data.to_csv(outpath, index=False)
     specs = dict(path=outpath, parse_dates={'Date_Time': ['Date', 'Time']})
     validator = SchemaValidator(specification=specs)
     try:
         loaded = pd.read_csv(**validator.get_parser_args())
         x = " ".join((date[0], time[0]))
         self.assertEqual(loaded['Date_Time'].dtype,
                          np.datetime64(x, 'ns').dtype)
     finally:
         shutil.rmtree(tempdir)