Exemple #1
0
    def predict(self, x, u=None, multiple_trajectories=False):
        """
        Predict the time derivatives using the SINDy model.

        Parameters
        ----------
        x: array-like or list of array-like, shape (n_samples, n_input_features)
            Samples.

        u: array-like or list of array-like, shape(n_samples, n_control_features), \
                (default None)
            Control variables. If ``multiple_trajectories=True`` then u
            must be a list of control variable data from each trajectory. If the
            model was fit with control variables then u is not optional.

        multiple_trajectories: boolean, optional (default False)
            If True, x contains multiple trajectories and must be a list of
            data from each trajectory. If False, x is a single trajectory.

        Returns
        -------
        x_dot: array-like or list of array-like, shape (n_samples, n_input_features)
            Predicted time derivatives
        """
        check_is_fitted(self, "model")
        if u is None or self.n_control_features_ == 0:
            if self.n_control_features_ > 0:
                raise TypeError(
                    "Model was fit using control variables, so u is required"
                )
            elif u is not None:
                warnings.warn(
                    "Control variables u were ignored because control variables were"
                    " not used when the model was fit"
                )
            if multiple_trajectories:
                x = [validate_input(xi) for xi in x]
                return [self.model.predict(xi) for xi in x]
            else:
                x = validate_input(x)
                return self.model.predict(x)
        else:
            if multiple_trajectories:
                x = [validate_input(xi) for xi in x]
                u = validate_control_variables(
                    x, u, multiple_trajectories=True, return_array=False
                )
                return [
                    self.model.predict(concatenate((xi, ui), axis=1))
                    for xi, ui in zip(x, u)
                ]
            else:
                x = validate_input(x)
                u = validate_control_variables(x, u)
                return self.model.predict(concatenate((x, u), axis=1))
Exemple #2
0
    def score(
        self,
        x,
        t=None,
        x_dot=None,
        u=None,
        multiple_trajectories=False,
        metric=r2_score,
        **metric_kws
    ):
        """
        Returns a score for the time derivative prediction.

        Parameters
        ----------
        x: array-like or list of array-like, shape (n_samples, n_input_features)
            Samples

        t: float, numpy array of shape [n_samples], or list of numpy arrays, optional \
                (default None)
            Time step between samples or array of collection times. Optional,
            used to compute the time derivatives of the samples if x_dot is not
            provided.
            If None, the default time step ``t_default`` will be used.

        x_dot: array-like or list of array-like, shape (n_samples, n_input_features), \
                optional (default None)
            Optional pre-computed derivatives of the samples. If provided,
            these values will be used to compute the score. If not provided,
            the time derivatives of the training data will be computed using
            the specified differentiation method.

        u: array-like or list of array-like, shape(n_samples, n_control_features), \
                optional (default None)
            Control variables. If ``multiple_trajectories=True`` then u
            must be a list of control variable data from each trajectory.
            If the model was fit with control variables then u is not optional.

        multiple_trajectories: boolean, optional (default False)
            If True, x contains multiple trajectories and must be a list of
            data from each trajectory. If False, x is a single trajectory.

        metric: metric function, optional
            Metric function with which to score the prediction. Default is the
            coefficient of determination R^2.

        metric_kws: dict, optional
            Optional keyword arguments to pass to the metric function.

        Returns
        -------
        score: float
            Metric function value for the model prediction of x_dot.
        """
        if t is None:
            t = self.t_default
        if u is None or self.n_control_features_ == 0:
            if self.n_control_features_ > 0:
                raise TypeError(
                    "Model was fit using control variables, so u is required"
                )
            elif u is not None:
                warnings.warn(
                    "Control variables u were ignored because control variables were"
                    " not used when the model was fit"
                )
        else:
            trim_last_point = self.discrete_time and (x_dot is None)
            u = validate_control_variables(
                x,
                u,
                multiple_trajectories=multiple_trajectories,
                trim_last_point=trim_last_point,
            )

        if multiple_trajectories:
            x, x_dot = self._process_multiple_trajectories(
                x, t, x_dot, return_array=True
            )
        else:
            x = validate_input(x, t)
            if x_dot is None:
                if self.discrete_time:
                    x_dot = x[1:]
                    x = x[:-1]
                else:
                    x_dot = self.differentiation_method(x, t)

        if ndim(x_dot) == 1:
            x_dot = x_dot.reshape(-1, 1)

        # Append control variables
        if u is not None and self.n_control_features_ > 0:
            x = concatenate((x, u), axis=1)

        # Drop rows where derivative isn't known (usually endpoints)
        x, x_dot = drop_nan_rows(x, x_dot)

        x_dot_predict = self.model.predict(x)
        return metric(x_dot, x_dot_predict, **metric_kws)
Exemple #3
0
    def fit(
        self,
        x,
        t=None,
        x_dot=None,
        u=None,
        multiple_trajectories=False,
        unbias=True,
        quiet=False,
    ):
        """
        Fit the SINDy model.

        Parameters
        ----------
        x: array-like or list of array-like, shape (n_samples, n_input_features)
            Training data. If training data contains multiple trajectories,
            x should be a list containing data for each trajectory. Individual
            trajectories may contain different numbers of samples.

        t: float, numpy array of shape [n_samples], or list of numpy arrays, optional \
                (default None)
            If t is a float, it specifies the timestep between each sample.
            If array-like, it specifies the time at which each sample was
            collected.
            In this case the values in t must be strictly increasing.
            In the case of multi-trajectory training data, t may also be a list
            of arrays containing the collection times for each individual
            trajectory.
            If None, the default time step ``t_default`` will be used.

        x_dot: array-like or list of array-like, shape (n_samples, n_input_features), \
                optional (default None)
            Optional pre-computed derivatives of the training data. If not
            provided, the time derivatives of the training data will be
            computed using the specified differentiation method. If x_dot is
            provided, it must match the shape of the training data and these
            values will be used as the time derivatives.

        u: array-like or list of array-like, shape (n_samples, n_control_features), \
                optional (default None)
            Control variables/inputs. Include this variable to use sparse
            identification for nonlinear dynamical systems for control (SINDYc).
            If training data contains multiple trajectories (i.e. if x is a list of
            array-like), then u should be a list containing control variable data
            for each trajectory. Individual trajectories may contain different
            numbers of samples.

        multiple_trajectories: boolean, optional, (default False)
            Whether or not the training data includes multiple trajectories. If
            True, the training data must be a list of arrays containing data
            for each trajectory. If False, the training data must be a single
            array.

        unbias: boolean, optional (default True)
            Whether to perform an extra step of unregularized linear regression to
            unbias the coefficients for the identified support.
            If the optimizer (``SINDy.optimizer``) applies any type of regularization,
            that regularization may bias coefficients toward particular values,
            improving the conditioning of the problem but harming the quality of the
            fit. Setting ``unbias=True`` enables an extra step wherein unregularized
            linear regression is applied, but only for the coefficients in the support
            identified by the optimizer. This helps to remove the bias introduced by
            regularization.

        quiet: boolean, optional (default False)
            Whether or not to suppress warnings during model fitting.

        Returns
        -------
        self: returns an instance of self
        """
        if t is None:
            t = self.t_default
        if u is None:
            self.n_control_features_ = 0
        else:
            trim_last_point = self.discrete_time and (x_dot is None)
            u = validate_control_variables(
                x,
                u,
                multiple_trajectories=multiple_trajectories,
                trim_last_point=trim_last_point,
            )
            self.n_control_features_ = u.shape[1]

        if multiple_trajectories:
            x, x_dot = self._process_multiple_trajectories(x, t, x_dot)
        else:
            x = validate_input(x, t)

            if self.discrete_time:
                if x_dot is None:
                    x_dot = x[1:]
                    x = x[:-1]
                else:
                    x_dot = validate_input(x_dot)
            else:
                if x_dot is None:
                    x_dot = self.differentiation_method(x, t)
                else:
                    x_dot = validate_input(x_dot, t)

        # Append control variables
        if self.n_control_features_ > 0:
            x = concatenate((x, u), axis=1)

        # Drop rows where derivative isn't known
        x, x_dot = drop_nan_rows(x, x_dot)

        optimizer = SINDyOptimizer(self.optimizer, unbias=unbias)
        steps = [("features", self.feature_library), ("model", optimizer)]
        self.model = Pipeline(steps)

        action = "ignore" if quiet else "default"
        with warnings.catch_warnings():
            warnings.filterwarnings(action, category=ConvergenceWarning)
            warnings.filterwarnings(action, category=LinAlgWarning)
            warnings.filterwarnings(action, category=UserWarning)

            self.model.fit(x, x_dot)

        self.n_input_features_ = self.model.steps[0][1].n_input_features_
        self.n_output_features_ = self.model.steps[0][1].n_output_features_

        if self.feature_names is None:
            feature_names = []
            for i in range(self.n_input_features_ - self.n_control_features_):
                feature_names.append("x" + str(i))
            for i in range(self.n_control_features_):
                feature_names.append("u" + str(i))
            self.feature_names = feature_names

        return self