def test_create_dataset(): train, val, test = prepare_train_test() X, y = create_dataset(train[0:2])
_, accuracy = model.evaluate([testX, testX, testX], testy, batch_size=batch_size, verbose=0) return accuracy if __name__ == '__main__': # data_dir = Path(r'../data/physionet_sleep/eeg_fpz_cz').resolve() data_dir = Path(r'../../data/physionet_sleep/eeg_fpz_cz').resolve() train, val, test = prepare_train_test(data_dir=data_dir) print(len(train)) from pysleep.data.data_generator import DataGenerator X, y = create_dataset(train[0:3]) val_X, val_y = create_dataset(val[0:1]) # train_dl = DataGenerator(train[0:3]) # evaluate_model(X, y, val_X, val_y) if 1: # model = CNN1Head(model_name='CNN1Head_train3_test2', epochs=20, learning_rate=0.005, batch_size=32) model = CNN3Head(model_name='CNN3Head_train10_test0', epochs=25, learning_rate=0.001, batch_size=16, metric='accuracy') model.build_model() # hist = model.fit_model(train_dl) hist = model.fit_model(X, y, val_X, val_y) # validation_data=(val_X,val_y))