def clean_example(self):
     tables = tskit.TableCollection(sequence_length=100)
     tables.populations.add_row()
     tables.populations.add_row()
     tables.individuals.add_row()
     tables.nodes.add_row(time=0, flags=tskit.NODE_IS_SAMPLE, population=1, individual=0)
     tables.nodes.add_row(time=0, flags=tskit.NODE_IS_SAMPLE, population=1, individual=0)
     pyslim.annotate_defaults_tables(tables, model_type='nonWF', slim_generation=1)
     return tables
 def test_inconsistent_nodes(self):
     clean_tables = self.clean_example()
     tables = clean_tables.copy()
     tables.nodes.clear()
     for j, n in enumerate(clean_tables.nodes):
         tables.nodes.add_row(
                 time=n.time, flags=n.flags,
                 population=j,
                 individual=n.individual,
                 metadata=n.metadata)
     with pytest.raises(ValueError):
         pyslim.annotate_defaults_tables(tables, model_type='nonWF', slim_generation=1)
     ts = tables.tree_sequence()
     with pytest.raises(ValueError):
         _ = pyslim.SlimTreeSequence(ts)
Exemple #3
0
 def test_dont_annotate_mutations(self, helper_functions):
     # Test the option to not overwrite mutation annotations
     ts = msprime.sim_ancestry(10)
     ts = msprime.sim_mutations(ts, rate=5, random_seed=3)
     assert ts.num_mutations > 0
     tables = ts.dump_tables()
     pre_mutations = tables.mutations.copy()
     pyslim.annotate_defaults_tables(tables,
                                     model_type="WF",
                                     slim_generation=1,
                                     annotate_mutations=False)
     # this is necessary because b'' actually is decoded to
     # an empty mutation_list by the schema
     pre_mutations.metadata_schema = tables.mutations.metadata_schema
     assert tables.mutations.equals(pre_mutations)
Exemple #4
0
# Keywords: Python, nonWF, non-Wright-Fisher, tree-sequence recording, tree sequence recording

import msprime, pyslim, random
import numpy as np

ts = msprime.simulate(sample_size=10000,
                      Ne=5000,
                      length=1e8,
                      mutation_rate=0.0,
                      recombination_rate=1e-8)

tables = ts.dump_tables()
pyslim.annotate_defaults_tables(tables, model_type="nonWF", slim_generation=1)

# add sexes and ages
individual_metadata = [ind.metadata for ind in tables.individuals]
for md in individual_metadata:
    md["sex"] = random.choice(
        [pyslim.INDIVIDUAL_TYPE_FEMALE, pyslim.INDIVIDUAL_TYPE_MALE])
    md["age"] = random.choice([0, 1, 2, 3, 4])

ims = tables.individuals.metadata_schema
tables.individuals.packset_metadata(
    [ims.validate_and_encode_row(md) for md in individual_metadata])

# add selected mutation

mut_ind_id = random.choice(range(tables.individuals.num_rows))
mut_node_id = random.choice(np.where(tables.nodes.individual == mut_ind_id)[0])
mut_node = tables.nodes[mut_node_id]
mut_metadata = {
# Keywords: Python, nonWF, non-Wright-Fisher, tree-sequence recording, tree sequence recording

import msprime, pyslim, random

ts = msprime.simulate(sample_size=10000, Ne=5000, length=1e8,
    mutation_rate=0.0, recombination_rate=1e-8)

tables = ts.dump_tables()
pyslim.annotate_defaults_tables(tables, model_type="nonWF", slim_generation=1)
individual_metadata = list(pyslim.extract_individual_metadata(tables))
for j in range(len(individual_metadata)):
    individual_metadata[j].sex = random.choice([pyslim.INDIVIDUAL_TYPE_FEMALE, pyslim.INDIVIDUAL_TYPE_MALE])
    individual_metadata[j].age = random.choice([0, 1, 2, 3, 4])

pyslim.annotate_individual_metadata(tables, individual_metadata)
slim_ts = pyslim.load_tables(tables)
slim_ts.dump("recipe_17.9.trees")