Exemple #1
0
def find_hl(data, domain, active_indices, solver):

    # Constants
    n_r = len(domain.real_vars)

    real_features = [[row[v] for v in domain.real_vars] for row, _ in data]
    labels = [row[1] for row in data]

    # Variables
    a_r = [smt.Symbol("a_r[{}]".format(r), REAL) for r in range(n_r)]
    b = smt.Symbol("b", REAL)

    # Constraints
    for i in active_indices:
        x_r, label = real_features[i], labels[i]
        sum_coefficients = smt.Plus(
            [a_r[r] * smt.Real(x_r[r]) for r in range(n_r)])
        if label:
            solver.add_assertion(sum_coefficients + DELTA <= b)
        else:
            solver.add_assertion(sum_coefficients - DELTA > b)

    if not solver.solve():
        return None
    model = solver.get_model()

    x_vars = [domain.get_symbol(domain.real_vars[r]) for r in range(n_r)]
    return smt.Plus([model.get_value(a_r[r]) * x_vars[r]
                     for r in range(n_r)]) <= model.get_value(b)
Exemple #2
0
def generate_half_space_sample(domain, real_count):
    samples = [get_sample(domain) for _ in range(real_count)]
    coefficients, offset = Learner.fit_hyperplane(domain, samples)
    coefficients = [smt.Real(float(coefficients[i][0])) * domain.get_symbol(domain.real_vars[i]) for i in
                    range(real_count)]
    if random.random() < 0.5:
        return smt.Plus(*coefficients) <= offset
    else:
        return smt.Plus(*coefficients) >= offset
Exemple #3
0
    def ast_to_smt(self, node):
        """
        :type node: Node
        """
        def convert_children(number=None):
            if number is not None and len(node.children) != number:
                raise Exception(
                    "The number of children ({}) differed from {}".format(
                        len(node.children), number))
            return [self.ast_to_smt(child) for child in node.children]

        if node.name == "ite":
            return smt.Ite(*convert_children(3))
        elif node.name == "~":
            return smt.Not(*convert_children(1))
        elif node.name == "^":
            return smt.Pow(*convert_children(2))
        elif node.name == "&":
            return smt.And(*convert_children())
        elif node.name == "|":
            return smt.Or(*convert_children())
        elif node.name == "*":
            return smt.Times(*convert_children())
        elif node.name == "+":
            return smt.Plus(*convert_children())
        elif node.name == "-":
            return smt.Minus(*convert_children(2))
        elif node.name == "<=":
            return smt.LE(*convert_children(2))
        elif node.name == ">=":
            return smt.GE(*convert_children(2))
        elif node.name == "<":
            return smt.LT(*convert_children(2))
        elif node.name == ">":
            return smt.GT(*convert_children(2))
        elif node.name == "=":
            return smt.Equals(*convert_children(2))
        elif node.name == "const":
            c_type, c_value = [child.name for child in node.children]
            if c_type == "bool":
                return smt.Bool(bool(c_value))
            elif c_type == "real":
                return smt.Real(float(c_value))
            else:
                raise Exception("Unknown constant type {}".format(c_type))
        elif node.name == "var":
            v_type, v_name = [child.name for child in node.children]
            if v_type == "bool":
                v_smt_type = smt.BOOL
            elif v_type == "real":
                v_smt_type = smt.REAL
            else:
                raise Exception("Unknown variable type {}".format(v_type))
            return smt.Symbol(v_name, v_smt_type)
        else:
            raise RuntimeError("Unrecognized node type '{}'".format(node.name))
Exemple #4
0
    def _exp_to_smt(self, expression):
        if isinstance(expression, sympy.Add):
            return smt.Plus([self._exp_to_smt(arg) for arg in expression.args])
        elif isinstance(expression, sympy.Mul):
            return smt.Times(*[self._exp_to_smt(arg) for arg in expression.args])
        elif isinstance(expression, sympy.Symbol):
            return smt.Symbol(str(expression), INT)

        try:
            expression = int(expression)
            return smt.Int(expression)
        except ValueError:
            pass
        raise RuntimeError("Could not parse {} of type {}".format(expression, type(expression)))
Exemple #5
0
def dual_paths_distinct(n):
    booleans = []  # ["A{}".format(i) for i in range(n)]
    domain = Domain.make(booleans, ["x{}".format(i) for i in range(n)], real_bounds=(0, 1))
    bool_vars = domain.get_bool_symbols()
    real_vars = domain.get_real_symbols()
    terms = []
    for i in range(n):
        v1, v2 = random.sample(real_vars, 2)
        terms.append(v1 * random.random() <= v2 * random.random())

    paths = []
    for i in range(n):
        paths.append(smt.Ite(smt.And(*random.sample(bool_vars + terms, n)), smt.Real(i), smt.Real(0)))

    return Density(domain, domain.get_bounds(), smt.Plus(*paths))
Exemple #6
0
    def _test_to_smt(self, operator):
        operator = operator.to_canonical()

        # FIXME Integer rounding only applicable if x >= 0

        def to_symbol(s):
            return smt.Symbol(s, typename=smt.types.INT)

        import math
        items = [smt.Times(smt.Int(int(math.floor(v))), to_symbol(k)) for k, v in operator.lhs.items()]
        lhs = smt.Plus([smt.Int(0)] + items)
        rhs = smt.Int(int(math.floor(operator.rhs)))

        assert operator.symbol == "<="

        return smt.LE(lhs, rhs)
Exemple #7
0
 def affine(self, a):
     """ return some positive rescaling of the affine expression
     s.t. the rescaled expression has integer coefficients
     safe, since positive rescaling preserves
     all of a >= 0, a > 0, and a == 0 """
     # find the lcm of the offset denominator
     # and all coefficient denominators
     mult = a.offset.denominator
     for t in a.terms:
         mult = _lcm(mult, t.coeff.denominator)
     # now, we can produce an integral affine equation,
     # by rescaling through with `mult`
     a = a * Fraction(mult)
     # Finally, convert this to an SMT formula
     assert a.offset.denominator == 1
     f = SMT.Int(a.offset.numerator)
     for t in a.terms:
         assert t.coeff.denominator == 1
         sym = self._ctxt.get(t.var)
         assert sym is not None, f"expected variable name '{t.var}'"
         term = SMT.Times(SMT.Int(t.coeff.numerator), sym)
         f = SMT.Plus(f, term)
     return f
Exemple #8
0
 def walk_plus(self, args):
     return smt.Plus(*self.walk_smt_multiple(args))
Exemple #9
0
def balancer_flow_formula(junctions, width, length):
    formula = []
    belts = [[
        Belt(s.Symbol(f'b{i}[{x}].rho', t.REAL),
             s.Symbol(f'b{i}[{x}].v', t.REAL)) for x in range(length + 1)
    ] for i in range(width)]
    for beltway in belts:
        for belt in beltway:
            formula.extend(domain(belt))
    if not s.is_sat(s.And(formula)):
        raise Exception('Domain is not SAT :/')

    # Balancing rules.
    junctions_by_x = [[] for x in range(length + 1)]
    for (x, y1, y2) in junctions:
        junctions_by_x[x].append((y1, y2))
        inn = x - 1
        out = x

        input_rho = s.Plus(belts[y1][inn].rho, belts[y2][inn].rho)
        # We want to put half of the input on each output.
        half_input = s.Div(input_rho, s.Real(2))

        # If output velocity is less than the half_input that we would like to
        # assign to it, we've filled it. Velocity is a hard limit, because it's out
        # of influence of this splitter. We'll set the output density to 1 in that
        # case. Aside: The flux is the min of that and the velocity, so if
        # out-velocity is the limiting factor, it won't change the flux calculation
        # to just assign rho_out = v_out.
        #
        # Now, the excess that we couldn't assign has to go somewhere: (1) to the
        # other output belt; if that's full, (2) feed back up the chain by reducing
        # input velocities.
        excess_from_1 = s.Max(s.Real(0), s.Minus(half_input, belts[y1][out].v))
        excess_from_2 = s.Max(s.Real(0), s.Minus(half_input, belts[y2][out].v))

        # This formula is most accurate for assignment > velocity (density will
        # equal 1), but it doesn't change the flux calculation just toset rho to
        # the velocity when velocity limits flow. (So you should be able to replace
        # the Ite by v_out and be OK.)
        formula.append(
            s.Equals(
                belts[y1][out].rho,
                s.Ite(half_input + excess_from_2 > belts[y1][out].v, s.Real(1),
                      half_input + excess_from_2)))
        formula.append(
            s.Equals(
                belts[y2][out].rho,
                s.Ite(half_input + excess_from_1 > belts[y2][out].v, s.Real(1),
                      half_input + excess_from_1)))

        output_v = s.Plus(belts[y1][out].v, belts[y2][out].v)
        half_output = s.Div(output_v, s.Real(2))
        unused_density_from_1 = s.Max(s.Real(0),
                                      s.Minus(half_output, belts[y1][inn].rho))
        unused_density_from_2 = s.Max(s.Real(0),
                                      s.Minus(half_output, belts[y2][inn].rho))

        formula.append(
            s.Equals(
                belts[y1][inn].v,
                s.Ite(half_output + unused_density_from_2 > belts[y1][inn].rho,
                      s.Real(1), half_output + unused_density_from_2)))
        formula.append(
            s.Equals(
                belts[y2][inn].v,
                s.Ite(half_output + unused_density_from_1 > belts[y2][inn].rho,
                      s.Real(1), half_output + unused_density_from_1)))
        # Conservation of flux at each junction.
        input_flux = s.Plus(belts[y1][inn].flux, belts[y2][inn].flux)
        output_flux = s.Plus(belts[y1][out].flux, belts[y2][out].flux)
        formula.append(s.Equals(input_flux, output_flux))

    # Any belts not involved in a junction are pass-throughs. Their successive
    # values must remain equal.
    thru_belts = [
        list(
            set(range(width)) - {y1
                                 for y1, y2 in junctions_by_x[x]} -
            {y2
             for y1, y2 in junctions_by_x[x]}) for x in range(length + 1)
    ]
    for x, thru in enumerate(thru_belts[1:]):
        for y in thru:
            formula.append(s.Equals(belts[y][x].rho, belts[y][x + 1].rho))
            formula.append(s.Equals(belts[y][x].v, belts[y][x + 1].v))

    return formula, belts
Exemple #10
0
def prove_properties(junctions):
    width = max(max(y1 for _, y1, _ in junctions),
                max(y2 for _, _, y2 in junctions)) + 1
    length = max(x for x, _, _ in junctions)
    formula, belts = balancer_flow_formula(junctions, width, length)

    supply = s.Plus(beltway[0].rho for beltway in belts)
    demand = s.Plus(beltway[-1].v for beltway in belts)
    max_theoretical_throughput = s.Min(supply, demand)
    actual_throughput = s.Plus(beltway[-1].flux for beltway in belts)

    fully_balanced_output = []
    max_flux = s.Max(b[-1].flux for b in belts)
    for i, b1 in enumerate(belts):
        fully_balanced_output.append(
            s.Or(s.Equals(b1[-1].flux, max_flux),
                 s.Equals(b1[-1].flux, b1[-1].v)))
    fully_balanced_output = s.And(fully_balanced_output)

    fully_balanced_input = []
    max_flux = s.Max(b[0].flux for b in belts)
    for i, b1 in enumerate(belts):
        fully_balanced_input.append(
            s.Or(s.Equals(b1[0].flux, max_flux),
                 s.Equals(b1[0].flux, b1[0].rho)))
    fully_balanced_input = s.And(fully_balanced_input)

    with s.Solver() as solver:
        solver.add_assertion(s.And(formula))
        solver.push()
        solver.add_assertion(
            s.Not(s.Equals(max_theoretical_throughput, actual_throughput)))

        if not solver.solve():
            print("It's throughput-unlimited!")
        else:
            print("It's throughput-limited; here's an example:")
            m = solver.get_model()
            inputs = tuple(m.get_py_value(beltway[0].rho) for beltway in belts)
            outputs = tuple(m.get_py_value(beltway[-1].v) for beltway in belts)
            print(f'Input lane densities: ({", ".join(map(str, inputs))})')
            print(f'Output lane velocities: ({", ".join(map(str, outputs))})')
            check_balancer_flow(junctions, inputs, outputs)

        solver.pop()
        solver.push()
        solver.add_assertion(s.Not(fully_balanced_input))

        if not solver.solve():
            print("It's input-balanced!")
        else:
            print("It's input-imbalanced; here's an example:")
            m = solver.get_model()
            inputs = tuple(m.get_py_value(beltway[0].rho) for beltway in belts)
            outputs = tuple(m.get_py_value(beltway[-1].v) for beltway in belts)
            print(f'Input lane densities: ({", ".join(map(str, inputs))})')
            print(f'Output lane velocities: ({", ".join(map(str, outputs))})')
            check_balancer_flow(junctions, inputs, outputs)

        solver.pop()
        solver.push()
        solver.add_assertion(s.Not(fully_balanced_output))
        if solver.solve:
            print("It's output-balanced!")
        else:
            print("It's output-imbalanced; here's an example:")
            m = solver.get_model()
            inputs = tuple(m.get_py_value(beltway[0].rho) for beltway in belts)
            outputs = tuple(m.get_py_value(beltway[-1].v) for beltway in belts)
            print(f'Input lane densities: ({", ".join(map(str, inputs))})')
            print(f'Output lane velocities: ({", ".join(map(str, outputs))})')
            check_balancer_flow(junctions, inputs, outputs)
Exemple #11
0
def generate_half_space(domain, real_count):
    coefficients = [smt.Real(random.random() * 2 - 1) * domain.get_symbol(domain.real_vars[i]) for i in
                    range(real_count)]
    return smt.LE(smt.Plus(*coefficients), smt.Real(random.random() * 2 - 1))
Exemple #12
0
    def __getExpressionTree(symbolicExpression):
        # TODO LATER: take into account bitwise shift operations
        args = []
        castType = None
        if len(symbolicExpression.args) > 0:
            for symbolicArg in symbolicExpression.args:
                arg, type = Solver.__getExpressionTree(symbolicArg)
                args.append(arg)
                if castType is None:
                    castType = type
                else:
                    if castType.literal == 'Integer':
                        if type.literal == 'Real':
                            castType = type
                    # TODO LATER: consider other possible castings
            if castType.literal == 'Real':
                for i in range(len(args)):
                    args[i] = pysmt.ToReal(args[i])

        if isinstance(symbolicExpression, sympy.Not):
            if castType.literal == 'Integer':
                return pysmt.Equals(args[0], pysmt.Int(0)), Type('Bool')
            elif castType.literal == 'Real':
                return pysmt.Equals(args[0], pysmt.Real(0)), Type('Bool')
            elif castType.literal == 'Bool':
                return pysmt.Not(args[0]), Type('Bool')
            else: # castType.literal == 'BitVector'
                return pysmt.BVNot(args[0]), Type('BitVector')
        elif isinstance(symbolicExpression, sympy.Lt):
            return pysmt.LT(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Gt):
            return pysmt.GT(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Ge):
            return pysmt.GE(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Le):
            return pysmt.LE(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Eq):
            return pysmt.Equals(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Ne):
            return pysmt.NotEquals(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.And):
            if castType.literal == 'Bool':
                return pysmt.And(args[0], args[1]), Type('Bool')
            else: # type.literal == 'BitVector'
                return pysmt.BVAnd(args[0], args[1]), castType
        elif isinstance(symbolicExpression, sympy.Or):
            if castType.literal == 'Bool':
                return pysmt.Or(args[0], args[1]), Type('Bool')
            else:  # type.literal == 'BitVector'
                return pysmt.BVOr(args[0], args[1]), castType
        elif isinstance(symbolicExpression, sympy.Xor):
            return pysmt.BVXor(args[0], args[1]), castType
        elif isinstance(symbolicExpression, sympy.Add):
            return pysmt.Plus(args), castType
        elif isinstance(symbolicExpression, sympy.Mul):
            return pysmt.Times(args), castType
        elif isinstance(symbolicExpression, sympy.Pow):
            return pysmt.Pow(args[0], args[1]), castType
        # TODO LATER: deal with missing modulo operator from pysmt
        else:
            if isinstance(symbolicExpression, sympy.Symbol):
                symbolType = Variable.symbolTypes[symbolicExpression.name]
                literal = symbolType.getTypeForSolver()
                designator = symbolType.designatorExpr1
                type = Type(literal, designator)
                return Solver.__encodeTerminal(symbolicExpression, type), type
            elif isinstance(symbolicExpression, sympy.Integer):
                type = Type('Integer')
                return Solver.__encodeTerminal(symbolicExpression, type), type
            elif isinstance(symbolicExpression, sympy.Rational):
                type = Type('Real')
                return Solver.__encodeTerminal(symbolicExpression, type), type
            elif isinstance(symbolicExpression, sympy.Float):
                type = Type('Real')
                return Solver.__encodeTerminal(symbolicExpression, type), type
            else:
                type = Type('Real')
                return Solver.__encodeTerminal(symbolicExpression, type), type
Exemple #13
0
    def learn_partial(self, solver, domain, data, new_active_indices):
        # Constants
        n_b_original = len(domain.bool_vars)
        n_b = n_b_original * 2
        n_r = len(domain.real_vars)

        n_h_original = self.half_space_count if n_r > 0 else 0
        n_h = n_h_original * 2 if self.allow_negations else n_h_original

        n_c = self.conjunction_count
        n_d = len(data)

        real_features = [[row[v] for v in domain.real_vars] for row, _ in data]
        bool_features = [[row[v] for v in domain.bool_vars] for row, _ in data]
        labels = [row[1] for row in data]

        # Variables
        a_hr = [[
            smt.Symbol("a_hr[{}][{}]".format(h, r), REAL) for r in range(n_r)
        ] for h in range(n_h_original)]
        b_h = [
            smt.Symbol("b_h[{}]".format(h), REAL) for h in range(n_h_original)
        ]
        s_ch = [[smt.Symbol("s_ch[{}][{}]".format(c, h)) for h in range(n_h)]
                for c in range(n_c)]
        s_cb = [[smt.Symbol("s_cb[{}][{}]".format(c, b)) for b in range(n_b)]
                for c in range(n_c)]

        # Aux variables
        s_ih = [[smt.Symbol("s_ih[{}][{}]".format(i, h)) for h in range(n_h)]
                for i in range(n_d)]
        s_ic = [[smt.Symbol("s_ic[{}][{}]".format(i, c)) for c in range(n_c)]
                for i in range(n_d)]

        # Constraints
        for i in new_active_indices:
            x_r, x_b, label = real_features[i], bool_features[i], labels[i]

            for h in range(n_h_original):
                sum_coefficients = smt.Plus(
                    [a_hr[h][r] * smt.Real(x_r[r]) for r in range(n_r)])
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients <= b_h[h]))

            for h in range(n_h_original, n_h):
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], ~s_ih[i][h - n_h_original]))

            for c in range(n_c):
                solver.add_assertion(
                    smt.Iff(
                        s_ic[i][c],
                        smt.And([smt.TRUE()] + [(~s_ch[c][h] | s_ih[i][h])
                                                for h in range(n_h)] +
                                [
                                    ~s_cb[c][b]
                                    for b in range(n_b_original) if not x_b[b]
                                ] + [
                                    ~s_cb[c][b]
                                    for b in range(n_b_original, n_b)
                                    if x_b[b - n_b_original]
                                ])))

            if label:
                solver.add_assertion(smt.Or([s_ic[i][c] for c in range(n_c)]))
            else:
                solver.add_assertion(smt.And([~s_ic[i][c]
                                              for c in range(n_c)]))

        solver.solve()
        model = solver.get_model()

        x_vars = [domain.get_symbol(domain.real_vars[r]) for r in range(n_r)]
        half_spaces = [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) <= model.get_value(b_h[h])
            for h in range(n_h_original)
        ] + [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) > model.get_value(b_h[h])
            for h in range(n_h - n_h_original)
        ]

        b_vars = [
            domain.get_symbol(domain.bool_vars[b]) for b in range(n_b_original)
        ]
        bool_literals = [b_vars[b] for b in range(n_b_original)]
        bool_literals += [~b_vars[b] for b in range(n_b - n_b_original)]

        conjunctions = [[
            half_spaces[h]
            for h in range(n_h) if model.get_py_value(s_ch[c][h])
        ] + [
            bool_literals[b]
            for b in range(n_b) if model.get_py_value(s_cb[c][b])
        ] for c in range(n_c)]

        return smt.Or([smt.And(conjunction) for conjunction in conjunctions])
Exemple #14
0
                   SMT.GT(variables[i + 2], SMT.Int(0))),
            SMT.Equals(variables[i + 1], SMT.Int(1))))

solver = SMT.Solver(name="z3")
print("constraints:")
for c in constraints:
    print(c)
    solver.add_assertion(c)

# add equations

# 24727*a_1 + 75235*b_1 + 50508*c_1 = 75235*a_2 + 125743*b_2 + 176251*c_2
solver.add_assertion(
    SMT.Equals(
        SMT.Plus(
            SMT.Plus(SMT.Times(SMT.Int(125743), variables[4]),
                     SMT.Times(SMT.Int(75235), variables[3])),
            SMT.Times(SMT.Int(176251), variables[5])),
        SMT.Plus(
            SMT.Plus(SMT.Times(SMT.Int(75235), variables[1]),
                     SMT.Times(SMT.Int(24727), variables[0])),
            SMT.Times(SMT.Int(50508), variables[2]))))

# 75235*a_2 + 125743*b_2 + 176251*c_2 = 125743*a_3 + 301994*b_3 + 16785921*c
solver.add_assertion(
    SMT.Equals(
        SMT.Plus(
            SMT.Plus(SMT.Times(SMT.Int(301994), variables[7]),
                     SMT.Times(SMT.Int(125743), variables[6])),
            SMT.Times(SMT.Int(16785921), variables[8])),
        SMT.Plus(
            SMT.Plus(SMT.Times(SMT.Int(125743), variables[4]),
    def learn_partial(self, solver, domain: Domain, data: np.ndarray,
                      labels: np.ndarray, new_active_indices: Set):

        # Constants
        n_b_original = len(domain.bool_vars)
        n_b = n_b_original * 2
        n_r = len(domain.real_vars)

        n_h_original = self.half_space_count if n_r > 0 else 0
        n_h = n_h_original * 2 if self.allow_negations else n_h_original

        n_c = self.conjunction_count
        n_d = data.shape[0]

        real_indices = np.array(
            [domain.var_types[v] == smt.REAL for v in domain.variables])
        real_features = data[:, real_indices]
        bool_features = data[:, np.logical_not(real_indices)]

        # Variables
        a_hr = [[
            smt.Symbol("a_hr[{}][{}]".format(h, r), REAL) for r in range(n_r)
        ] for h in range(n_h_original)]
        b_h = [
            smt.Symbol("b_h[{}]".format(h), REAL) for h in range(n_h_original)
        ]
        s_ch = [[smt.Symbol("s_ch[{}][{}]".format(c, h)) for h in range(n_h)]
                for c in range(n_c)]
        s_cb = [[smt.Symbol("s_cb[{}][{}]".format(c, b)) for b in range(n_b)]
                for c in range(n_c)]

        # Aux variables
        s_ih = [[smt.Symbol("s_ih[{}][{}]".format(i, h)) for h in range(n_h)]
                for i in range(n_d)]
        s_ic = [[smt.Symbol("s_ic[{}][{}]".format(i, c)) for c in range(n_c)]
                for i in range(n_d)]

        def pair(real: bool, c: int, index: int) -> Tuple[FNode, FNode]:
            if real:
                return s_ch[c][index], s_ch[c][index + n_h_original]
            else:
                return s_cb[c][index], s_cb[c][index + n_b_original]

        def order_equal(pair1, pair2):
            x_t, x_f, y_t, y_f = pair1 + pair2
            return smt.Iff(x_t, y_t) & smt.Iff(x_f, y_f)

        def order_geq(pair1, pair2):
            x_t, x_f, y_t, y_f = pair1 + pair2
            return x_t | y_f | ((~x_f) & (~y_t))

        def pairs(c: int) -> List[Tuple[FNode, FNode]]:
            return [pair(True, c, i) for i in range(n_h_original)
                    ] + [pair(False, c, i) for i in range(n_b_original)]

        def order_geq_lex(c1: int, c2: int):
            pairs_c1, pairs_c2 = pairs(c1), pairs(c2)
            assert len(pairs_c1) == len(pairs_c2)
            constraints = smt.TRUE()
            for j in range(len(pairs_c1)):
                condition = smt.TRUE()
                for i in range(j):
                    condition &= order_equal(pairs_c1[i], pairs_c2[i])
                constraints &= smt.Implies(condition,
                                           order_geq(pairs_c1[j], pairs_c2[j]))
            return constraints

        # Constraints
        for i in new_active_indices:
            x_r, x_b, label = [float(val) for val in real_features[i]
                               ], bool_features[i], labels[i]

            for h in range(n_h_original):
                sum_coefficients = smt.Plus(
                    [a_hr[h][r] * smt.Real(x_r[r]) for r in range(n_r)])
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients <= b_h[h]))

            for h in range(n_h_original, n_h):
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], ~s_ih[i][h - n_h_original]))

            for c in range(n_c):
                solver.add_assertion(
                    smt.Iff(
                        s_ic[i][c],
                        smt.
                        Or([smt.FALSE()] + [(s_ch[c][h] & s_ih[i][h])
                                            for h in range(n_h)] +
                           [s_cb[c][b]
                            for b in range(n_b_original) if x_b[b]] + [
                                s_cb[c][b] for b in range(n_b_original, n_b)
                                if not x_b[b - n_b_original]
                            ])))

            # --- [start] symmetry breaking ---
            # Mutually exclusive
            if "m" in self.symmetries:
                for c in range(n_c):
                    for h in range(n_h_original):
                        solver.add_assertion(~(s_ch[c][h]
                                               & s_ch[c][h + n_h_original]))
                    for b in range(n_b_original):
                        solver.add_assertion(~(s_cb[c][b]
                                               & s_cb[c][b + n_b_original]))

            # Normalized
            if "n" in self.symmetries:
                for h in range(n_h_original):
                    solver.add_assertion(
                        smt.Equals(b_h[h], smt.Real(1.0))
                        | smt.Equals(b_h[h], smt.Real(0.0)))

            # Vertical symmetries
            if "v" in self.symmetries:
                for c in range(n_c - 1):
                    solver.add_assertion(order_geq_lex(c, c + 1))

            # Horizontal symmetries
            if "h" in self.symmetries:
                for h in range(n_h_original - 1):
                    solver.add_assertion(a_hr[h][0] >= a_hr[h + 1][0])
            # --- [end] symmetry breaking ---

            if label:
                solver.add_assertion(smt.And([s_ic[i][c] for c in range(n_c)]))
            else:
                solver.add_assertion(smt.Or([~s_ic[i][c] for c in range(n_c)]))

        solver.solve()
        model = solver.get_model()

        x_vars = [domain.get_symbol(domain.real_vars[r]) for r in range(n_r)]
        half_spaces = [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) <= model.get_value(b_h[h])
            for h in range(n_h_original)
        ] + [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) > model.get_value(b_h[h])
            for h in range(n_h - n_h_original)
        ]

        b_vars = [
            domain.get_symbol(domain.bool_vars[b]) for b in range(n_b_original)
        ]
        bool_literals = [b_vars[b] for b in range(n_b_original)]
        bool_literals += [~b_vars[b] for b in range(n_b - n_b_original)]

        conjunctions = [[
            half_spaces[h]
            for h in range(n_h) if model.get_py_value(s_ch[c][h])
        ] + [
            bool_literals[b]
            for b in range(n_b) if model.get_py_value(s_cb[c][b])
        ] for c in range(n_c)]

        return smt.And([smt.Or(conjunction) for conjunction in conjunctions])
Exemple #16
0
def find_cnf(data, domain, active_indices, solver, n_c, n_h):
    # Constants
    n_b_original = len(domain.bool_vars)
    n_b = n_b_original * 2
    n_r = len(domain.real_vars)
    n_d = len(data)

    real_features = [[row[v] for v in domain.real_vars] for row, _ in data]
    bool_features = [[row[v] for v in domain.bool_vars] for row, _ in data]
    labels = [row[1] for row in data]

    # Variables
    a_hr = [[
        smt.Symbol("a_hr[{}][{}]".format(h, r), REAL) for r in range(n_r)
    ] for h in range(n_h)]
    b_h = [smt.Symbol("b_h[{}]".format(h), REAL) for h in range(n_h)]
    s_ch = [[smt.Symbol("s_ch[{}][{}]".format(c, h)) for h in range(n_h)]
            for c in range(n_c)]
    s_cb = [[smt.Symbol("s_cb[{}][{}]".format(c, b)) for b in range(n_b)]
            for c in range(n_c)]

    # Aux variables
    s_ih = [[smt.Symbol("s_ih[{}][{}]".format(i, h)) for h in range(n_h)]
            for i in range(n_d)]
    s_ic = [[smt.Symbol("s_ic[{}][{}]".format(i, c)) for c in range(n_c)]
            for i in range(n_d)]

    # Constraints
    for i in active_indices:
        x_r, x_b, label = real_features[i], bool_features[i], labels[i]

        for h in range(n_h):
            sum_coefficients = smt.Plus(
                [a_hr[h][r] * smt.Real(x_r[r]) for r in range(n_r)])
            if label:
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients + DELTA <= b_h[h]))
            else:
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients - DELTA <= b_h[h]))

        for c in range(n_c):
            solver.add_assertion(
                smt.Iff(
                    s_ic[i][c],
                    smt.Or([smt.FALSE()] + [(s_ch[c][h] & s_ih[i][h])
                                            for h in range(n_h)] +
                           [s_cb[c][b]
                            for b in range(n_b_original) if x_b[b]] + [
                                s_cb[c][b] for b in range(n_b_original, n_b)
                                if not x_b[b - n_b_original]
                            ])))

        if label:
            solver.add_assertion(smt.And([s_ic[i][c] for c in range(n_c)]))
        else:
            solver.add_assertion(smt.Or([~s_ic[i][c] for c in range(n_c)]))

    if not solver.solve():
        return None
    model = solver.get_model()

    x_vars = [domain.get_symbol(domain.real_vars[r]) for r in range(n_r)]
    half_spaces = [
        smt.Plus([model.get_value(a_hr[h][r]) * x_vars[r]
                  for r in range(n_r)]) <= model.get_value(b_h[h])
        for h in range(n_h)
    ]

    b_vars = [
        domain.get_symbol(domain.bool_vars[b]) for b in range(n_b_original)
    ]
    bool_literals = [b_vars[b] for b in range(n_b_original)]
    bool_literals += [~b_vars[b] for b in range(n_b - n_b_original)]

    conjunctions = [
        [half_spaces[h]
         for h in range(n_h) if model.get_py_value(s_ch[c][h])] + [
             bool_literals[b]
             for b in range(n_b) if model.get_py_value(s_cb[c][b])
         ] for c in range(n_c)
    ]

    return smt.And([smt.Or(conjunction) for conjunction in conjunctions])
Exemple #17
0
    def initialize(self, mdp, colors, hole_options, reward_name, okay_states,
                   target_states, threshold, relation):
        logger.warning("This approach has been tested sparsely.")
        prob0E, prob1A = stormpy.compute_prob01min_states(
            mdp, okay_states, target_states)
        sink_states = ~okay_states

        assert len(mdp.initial_states) == 1
        self.state_vars = [
            smt.Symbol("p_{}".format(i), smt.REAL)
            for i in range(mdp.nr_states)
        ]
        self.state_prob1_vars = [
            smt.Symbol("asure_{}".format(i)) for i in range(mdp.nr_states)
        ]
        self.state_probpos_vars = [
            smt.Symbol("x_{}".format(i)) for i in range(mdp.nr_states)
        ]
        self.state_order_vars = [
            smt.Symbol("r_{}".format(i), smt.REAL)
            for i in range(mdp.nr_states)
        ]
        self.option_vars = dict()
        for h, opts in hole_options.items():
            self.option_vars[h] = {
                index: smt.Symbol("h_{}_{}".format(h, opt))
                for index, opt in enumerate(opts)
            }
        self.transition_system = []
        logger.debug("Obtain rewards if necessary")

        rewards = mdp.reward_models[reward_name] if reward_name else None
        if rewards:
            assert not rewards.has_transition_rewards
            state_rewards = rewards.has_state_rewards
            action_rewards = rewards.has_state_action_rewards
            logger.debug(
                "Model has state rewards: {}, has state/action rewards {}".
                format(state_rewards, action_rewards))

            self.transition_system.append(
                self.state_prob1_vars[mdp.initial_states[0]])

        threshold_inequality, action_constraint_inequality = self._to_smt_relation(
            relation)  # TODO or GE
        self.transition_system.append(
            threshold_inequality(self.state_vars[mdp.initial_states[0]],
                                 smt.Real(float(threshold))))

        state_order_domain_constraint = smt.And([
            smt.And(smt.GE(var, smt.Real(0)), smt.LE(var, smt.Real(1)))
            for var in self.state_order_vars
        ])
        self.transition_system.append(state_order_domain_constraint)
        #TODO how to ensure that prob is zero if there is no path.

        select_parameter_value_constraints = []
        for h, opts in self.option_vars.items():
            select_parameter_value_constraints.append(
                smt.Or(ov for ov in opts.values()))
            for i, opt1 in enumerate(opts.values()):
                for opt2 in list(opts.values())[i + 1:]:
                    select_parameter_value_constraints.append(
                        smt.Not(smt.And(opt1, opt2)))
        #logger.debug("Consistency: {}".format(smt.And(select_parameter_value_constraints)))
        self.transition_system.append(
            smt.And(select_parameter_value_constraints))

        for state in mdp.states:
            if sink_states.get(state.id):
                assert rewards is None
                self.transition_system.append(
                    smt.Equals(self.state_vars[state.id], smt.REAL(0)))
                #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                self.transition_system.append(
                    smt.Not(self.state_prob1_vars[state.id]))
                #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                self.transition_system.append(
                    smt.Equals(self.state_order_vars[state.id], smt.Real(0)))
                #logger.debug("Constraint: {}".format(self.transition_system[-1]))
            elif target_states.get(state.id):
                self.transition_system.append(
                    smt.Equals(self.state_order_vars[state.id], smt.Real(1)))
                #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                self.transition_system.append(self.state_prob1_vars[state.id])
                #logger.debug("Constraint: {}".format(self.transition_system[-1]))

                if rewards is None:
                    self.transition_system.append(
                        smt.Equals(self.state_vars[state.id], smt.Real(1)))
                    #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                else:
                    self.transition_system.append(
                        self.state_probpos_vars[state.id])
                    #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                    self.transition_system.append(
                        smt.Equals(self.state_vars[state.id], smt.Real(0)))
                    #logger.debug("Constraint: {}".format(self.transition_system[-1]))
            else:
                state_in_prob1A = False
                state_in_prob0E = False
                if prob0E.get(state.id):
                    state_in_prob0E = True
                else:
                    self.transition_system.append(
                        smt.Equals(self.state_order_vars[state.id],
                                   smt.Real(1)))
                    #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                    self.transition_system.append(
                        self.state_probpos_vars[state.id])
                    #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                if rewards and not state_in_prob0E:
                    if prob1A.get(state.id):
                        self.transition_system.append(
                            self.state_prob1_vars[state.id])
                        logger.debug("Constraint: {}".format(
                            self.transition_system[-1]))
                        state_in_prob1A = True

                for action in state.actions:
                    action_index = mdp.nondeterministic_choice_indices[
                        state.id] + action.id
                    #logger.debug("Action index: {}".format(action_index))
                    precondition = smt.And([
                        self.option_vars[hole][list(option)[0]] for hole,
                        option in colors.get(action_index, dict()).items()
                    ])
                    reward_value = None
                    if rewards:
                        reward_const = (rewards.get_state_reward(
                            state.id) if state_rewards else 0.0) + (
                                rewards.get_state_action_reward(action_index)
                                if action_rewards else 0.0)
                        reward_value = smt.Real(reward_const)
                    act_constraint = action_constraint_inequality(
                        self.state_vars[state.id],
                        smt.Plus([
                            smt.Times(smt.Real(t.value()), self.
                                      state_vars[t.column])
                            for t in action.transitions
                        ] + [reward_value] if reward_value else []))
                    full_act_constraint = act_constraint
                    if state_in_prob0E:
                        if not rewards:
                            full_act_constraint = smt.And(
                                smt.Implies(self.state_probpos_vars[state.id],
                                            act_constraint),
                                smt.Implies(
                                    smt.Not(self.state_probpos_vars),
                                    smt.Equals(self.state_vars[state.id],
                                               smt.Real(0))))
                        self.transition_system.append(
                            smt.Implies(
                                precondition,
                                smt.Iff(
                                    self.state_probpos_vars[state.id],
                                    smt.Or([
                                        smt.And(
                                            self.state_probpos_vars[t.column],
                                            smt.LT(
                                                self.state_order_vars[
                                                    state.id],
                                                self.state_order_vars[
                                                    t.column]))
                                        for t in action.transitions
                                    ]))))
                        #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                    if rewards and not state_in_prob1A:
                        # prob_one(state) <-> probpos AND for all succ prob_one(succ)
                        self.transition_system.append(
                            smt.Implies(
                                precondition,
                                smt.Iff(
                                    self.state_prob1_vars[state.id],
                                    smt.And([
                                        self.state_prob1_vars[t.column]
                                        for t in action.transitions
                                    ] + [self.state_probpos_vars[state.id]]))))
                        #logger.debug("Constraint: {}".format(self.transition_system[-1]))
                    self.transition_system.append(
                        smt.Implies(precondition, full_act_constraint))
                    #logger.debug("Constraint: {}".format(self.transition_system[-1]))

        if rewards:
            self.transition_system.append(
                smt.And([smt.GE(sv, smt.Real(0)) for sv in self.state_vars]))
        else:
            self.transition_system.append(
                smt.And([
                    smt.And(smt.GE(sv, smt.Real(0)), smt.LE(sv, smt.Real(1)))
                    for sv in self.state_vars
                ]))

        #print(self.transition_system)
        formula = smt.And(self.transition_system)
        logger.info("Start SMT solver")
        model = smt.get_model(formula)

        if model:
            logger.info("SAT: Found {}".format(model))
        else:
            logger.info("UNSAT.")