Exemple #1
0
    def ast_to_smt(self, node):
        """
        :type node: Node
        """
        def convert_children(number=None):
            if number is not None and len(node.children) != number:
                raise Exception(
                    "The number of children ({}) differed from {}".format(
                        len(node.children), number))
            return [self.ast_to_smt(child) for child in node.children]

        if node.name == "ite":
            return smt.Ite(*convert_children(3))
        elif node.name == "~":
            return smt.Not(*convert_children(1))
        elif node.name == "^":
            return smt.Pow(*convert_children(2))
        elif node.name == "&":
            return smt.And(*convert_children())
        elif node.name == "|":
            return smt.Or(*convert_children())
        elif node.name == "*":
            return smt.Times(*convert_children())
        elif node.name == "+":
            return smt.Plus(*convert_children())
        elif node.name == "-":
            return smt.Minus(*convert_children(2))
        elif node.name == "<=":
            return smt.LE(*convert_children(2))
        elif node.name == ">=":
            return smt.GE(*convert_children(2))
        elif node.name == "<":
            return smt.LT(*convert_children(2))
        elif node.name == ">":
            return smt.GT(*convert_children(2))
        elif node.name == "=":
            return smt.Equals(*convert_children(2))
        elif node.name == "const":
            c_type, c_value = [child.name for child in node.children]
            if c_type == "bool":
                return smt.Bool(bool(c_value))
            elif c_type == "real":
                return smt.Real(float(c_value))
            else:
                raise Exception("Unknown constant type {}".format(c_type))
        elif node.name == "var":
            v_type, v_name = [child.name for child in node.children]
            if v_type == "bool":
                v_smt_type = smt.BOOL
            elif v_type == "real":
                v_smt_type = smt.REAL
            else:
                raise Exception("Unknown variable type {}".format(v_type))
            return smt.Symbol(v_name, v_smt_type)
        else:
            raise RuntimeError("Unrecognized node type '{}'".format(node.name))
 def power(self, a, power):
     return smt.Pow(a, smt.Real(power))
Exemple #3
0
 def walk_pow(self, base, exponent):
     return smt.Pow(self.walk_smt(base), self.walk_smt(exponent))
Exemple #4
0
    def __getExpressionTree(symbolicExpression):
        # TODO LATER: take into account bitwise shift operations
        args = []
        castType = None
        if len(symbolicExpression.args) > 0:
            for symbolicArg in symbolicExpression.args:
                arg, type = Solver.__getExpressionTree(symbolicArg)
                args.append(arg)
                if castType is None:
                    castType = type
                else:
                    if castType.literal == 'Integer':
                        if type.literal == 'Real':
                            castType = type
                    # TODO LATER: consider other possible castings
            if castType.literal == 'Real':
                for i in range(len(args)):
                    args[i] = pysmt.ToReal(args[i])

        if isinstance(symbolicExpression, sympy.Not):
            if castType.literal == 'Integer':
                return pysmt.Equals(args[0], pysmt.Int(0)), Type('Bool')
            elif castType.literal == 'Real':
                return pysmt.Equals(args[0], pysmt.Real(0)), Type('Bool')
            elif castType.literal == 'Bool':
                return pysmt.Not(args[0]), Type('Bool')
            else: # castType.literal == 'BitVector'
                return pysmt.BVNot(args[0]), Type('BitVector')
        elif isinstance(symbolicExpression, sympy.Lt):
            return pysmt.LT(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Gt):
            return pysmt.GT(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Ge):
            return pysmt.GE(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Le):
            return pysmt.LE(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Eq):
            return pysmt.Equals(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.Ne):
            return pysmt.NotEquals(args[0], args[1]), Type('Bool')
        elif isinstance(symbolicExpression, sympy.And):
            if castType.literal == 'Bool':
                return pysmt.And(args[0], args[1]), Type('Bool')
            else: # type.literal == 'BitVector'
                return pysmt.BVAnd(args[0], args[1]), castType
        elif isinstance(symbolicExpression, sympy.Or):
            if castType.literal == 'Bool':
                return pysmt.Or(args[0], args[1]), Type('Bool')
            else:  # type.literal == 'BitVector'
                return pysmt.BVOr(args[0], args[1]), castType
        elif isinstance(symbolicExpression, sympy.Xor):
            return pysmt.BVXor(args[0], args[1]), castType
        elif isinstance(symbolicExpression, sympy.Add):
            return pysmt.Plus(args), castType
        elif isinstance(symbolicExpression, sympy.Mul):
            return pysmt.Times(args), castType
        elif isinstance(symbolicExpression, sympy.Pow):
            return pysmt.Pow(args[0], args[1]), castType
        # TODO LATER: deal with missing modulo operator from pysmt
        else:
            if isinstance(symbolicExpression, sympy.Symbol):
                symbolType = Variable.symbolTypes[symbolicExpression.name]
                literal = symbolType.getTypeForSolver()
                designator = symbolType.designatorExpr1
                type = Type(literal, designator)
                return Solver.__encodeTerminal(symbolicExpression, type), type
            elif isinstance(symbolicExpression, sympy.Integer):
                type = Type('Integer')
                return Solver.__encodeTerminal(symbolicExpression, type), type
            elif isinstance(symbolicExpression, sympy.Rational):
                type = Type('Real')
                return Solver.__encodeTerminal(symbolicExpression, type), type
            elif isinstance(symbolicExpression, sympy.Float):
                type = Type('Real')
                return Solver.__encodeTerminal(symbolicExpression, type), type
            else:
                type = Type('Real')
                return Solver.__encodeTerminal(symbolicExpression, type), type