Exemple #1
0
    def export_rules(self, formula):
        ex = self.export_expr

        uvars, formula = self.extract_universal(formula)
        precondition = None
        if formula.is_implies():
            precondition = formula.arg(0)
            formula = formula.arg(1)

        if formula.is_equals() or formula.is_iff():
            if uvars:
                re = {v: self._qvar_from_symbol(v) for v in uvars}
                formula = formula.substitute(re)
                uvars = re.values()
            uvars = set(uvars)
            fv = lambda phi: get_free_variables(phi) & uvars

            lhs, rhs = formula.args()
            for lhs, rhs in [(lhs, rhs), (rhs, lhs)]:
                if ((lhs not in uvars) and  # avoid e.g. x => x + 0
                        fv(lhs) >= fv(rhs)):
                    if precondition is not None:
                        yield SExpression([
                            '=>',
                            self._fresh('rule%d'),
                            ex(Implies(precondition, formula))
                        ])
                    else:
                        yield SExpression(
                            ['=>',
                             self._fresh('rule%d'),
                             ex(lhs),
                             ex(rhs)])
        elif not (formula.is_not()
                  and self.extract_universal(formula.args()[0])[0]):
            # this is either a not exp or an expr
            if uvars:
                re = {v: self._qvar_from_symbol(v) for v in uvars}
                formula = formula.substitute(re)
                uvars = re.values()
            uvars = set(uvars)

            equals_to = TRUE()
            if formula.is_not():
                formula = formula.args()[0]
                equals_to = FALSE()
            op = '<=>'
            if uvars:
                op = '=>'
            if precondition is not None:
                yield SExpression([
                    op,
                    self._fresh('rule%d'),
                    ex(Implies(precondition, Iff(formula, equals_to)))
                ])
            else:
                yield SExpression(
                    [op, self._fresh('rule%d'),
                     ex(formula),
                     ex(equals_to)])
Exemple #2
0
    def test_get_free_vars(self):
        x, y = Symbol("x"), Symbol("y")
        f = Implies(x, And(y, Not(x)))

        s = get_free_variables(f)
        self.assertEqual(set([x, y]), s)
Exemple #3
0
    def test_get_free_vars(self):
        x, y = Symbol("x"), Symbol("y")
        f = Implies(x, And(y, Not(x)))

        s = get_free_variables(f)
        self.assertEqual(set([x, y]), s)
Exemple #4
0
    def solve_problems(self, problems_config: ProblemsManager) -> None:

        general_config = problems_config.general_config
        model_extension = general_config.model_extension
        assume_if_true = general_config.assume_if_true

        self.sparser = StringParser(general_config)
        self.lparser = LTLParser()

        self.coi = ConeOfInfluence()

        modifier = None
        if general_config.model_extension is not None:
            modifier = lambda hts: ModelExtension.extend(
                hts,
                ModelModifiersFactory.modifier_by_name(general_config.
                                                       model_extension))

        # generate main system system
        hts, invar_props, ltl_props = self.parse_model(
            general_config.model_files, problems_config.relative_path,
            general_config, "System 1", modifier)

        # Generate second models if any are necessary
        for problem in problems_config.problems:
            if problem.verification == VerificationType.EQUIVALENCE:
                if problem.equal_to is None:
                    raise RuntimeError(
                        "No second model for equivalence "
                        "checking provided for problem {}".format(
                            problem.name))

                hts2, _, _ = self.parse_model(problem.equal_to,
                                              problems_config.relative_path,
                                              general_config, "System 2",
                                              modifier)
                problems_config.add_second_model(problem, hts2)

        # TODO : contain these types of passes in functions
        #        they should be registered as passes

        if general_config.init is not None:
            iparser = InitParser()
            init_hts, inv_a, ltl_a = iparser.parse_file(
                general_config.init, general_config)
            assert inv_a is None and ltl_a is None, "Not expecting assertions from init state file"

            # remove old inits
            for ts in hts.tss:
                ts.init = TRUE()

            hts.combine(init_hts)
            hts.single_init(rebuild=True)

        # set default bit-wise initial values (0 or 1)
        if general_config.default_initial_value is not None:
            def_init_val = int(general_config.default_initial_value)
            try:
                if int(def_init_val) not in {0, 1}:
                    raise RuntimeError
            except:
                raise RuntimeError(
                    "Expecting 0 or 1 for default_initial_value,"
                    "but received {}".format(def_init_val))
            def_init_ts = TS("Default initial values")
            new_init = []
            initialized_vars = get_free_variables(hts.single_init())
            state_vars = hts.state_vars
            num_def_init_vars = 0
            num_state_vars = len(state_vars)

            const_arr_supported = True

            if hts.logic == L_ABV:
                for p in problems_config.problems:
                    if p.solver_name not in CONST_ARRAYS_SUPPORT:
                        const_arr_supported = False
                        Logger.warning(
                            "Using default_initial_value with arrays, "
                            "but one of the selected solvers, "
                            "{} does not support constant arrays. "
                            "Any assumptions on initial array values will "
                            "have to be done manually".format(
                                problem.solver_name))
                        break

            for sv in state_vars - initialized_vars:
                if sv.get_type().is_bv_type():
                    width = sv.get_type().width
                    if int(def_init_val) == 1:
                        val = BV((2**width) - 1, width)
                    else:
                        val = BV(0, width)

                    num_def_init_vars += 1
                elif sv.get_type().is_array_type() and \
                     sv.get_type().elem_type.is_bv_type() and \
                     const_arr_supported:
                    svtype = sv.get_type()
                    width = svtype.elem_type.width
                    if int(def_init_val) == 1:
                        val = BV((2**width) - 1, width)
                    else:
                        val = BV(0, width)
                    # create a constant array with a default value
                    val = Array(svtype.index_type, val)
                else:
                    continue

                def_init_ts.add_state_var(sv)
                new_init.append(EqualsOrIff(sv, val))
            def_init_ts.set_behavior(simplify(And(new_init)), TRUE(), TRUE())
            hts.add_ts(def_init_ts)
            Logger.msg(
                "Set {}/{} state elements to zero "
                "in initial state\n".format(num_def_init_vars, num_state_vars),
                1)

        problems_config.hts = hts

        # TODO: Update this so that we can control whether embedded assertions are solved automatically
        if not general_config.skip_embedded:
            for invar_prop in invar_props:
                problems_config.add_problem(
                    verification=VerificationType.SAFETY,
                    name=invar_prop[0],
                    description=invar_prop[1],
                    properties=invar_prop[2])
                self.properties.append(invar_prop[2])
            for ltl_prop in ltl_props:
                problems_config.add_problem(verification=VerificationType.LTL,
                                            name=invar_prop[0],
                                            description=invar_prop[1],
                                            properties=invar_prop[2])
                self.properties.append(ltl_prop[2])

        Logger.log(
            "Solving with abstract_clock=%s, add_clock=%s" %
            (general_config.abstract_clock, general_config.add_clock), 2)

        # ensure the miter_out variable exists
        miter_out = None

        for problem in problems_config.problems:
            if problem.name is not None:
                Logger.log(
                    "\n*** Analyzing problem \"%s\" ***" % (problem.name), 1)
                Logger.msg("Solving \"%s\" " % problem.name, 0,
                           not (Logger.level(1)))

            # apply parametric behaviors (such as toggling the clock)
            # Note: This is supposed to be *before* creating the combined system for equivalence checking
            #       we want this assumption to be applied to both copies of the clock
            problem_hts = ParametricBehavior.apply_to_problem(
                problems_config.hts, problem, general_config, self.model_info)

            if problem.verification == VerificationType.EQUIVALENCE:
                hts2 = problems_config.get_second_model(problem)
                problem_hts, miter_out = Miter.combine_systems(
                    hts, hts2, problem.bmc_length,
                    general_config.symbolic_init, problem.properties, True)

            try:
                # convert the formulas to PySMT FNodes
                # lemmas, assumptions and precondition always use the regular parser
                lemmas, assumptions, precondition = self.convert_formulae(
                    [
                        problem.lemmas, problem.assumptions,
                        problem.precondition
                    ],
                    parser=self.sparser,
                    relative_path=problems_config.relative_path)

                if problem.verification != VerificationType.LTL:
                    parser = self.sparser
                else:
                    parser = self.lparser

                prop = None
                if problem.properties is not None:
                    prop = self.convert_formula(
                        problem.properties,
                        relative_path=problems_config.relative_path,
                        parser=parser)
                    assert len(prop) == 1, "Properties should already have been split into " \
                        "multiple problems but found {} properties here".format(len(prop))
                    prop = prop[0]
                    self.properties.append(prop)
                else:
                    if problem.verification == VerificationType.SIMULATION:
                        prop = TRUE()
                    elif (problem.verification
                          is not None) and (problem.verification !=
                                            VerificationType.EQUIVALENCE):
                        Logger.error(
                            "Property not provided for problem {}".format(
                                problem.name))

                if problem.verification == VerificationType.EQUIVALENCE:
                    assert miter_out is not None
                    # set property to be the miter output
                    # if user provided a different equivalence property, this has already
                    # been incorporated in the miter_out
                    prop = miter_out
                    # reset the miter output
                    miter_out = None

                if precondition:
                    assert len(precondition
                               ) == 1, "There should only be one precondition"
                    prop = Implies(precondition[0], prop)

                # TODO: keep assumptions separate from the hts
                # IMPORTANT: CLEAR ANY PREVIOUS ASSUMPTIONS AND LEMMAS
                #   This was previously done in __solve_problem and has been moved here
                #   during the frontend refactor in April 2019
                # this is necessary because the problem hts is just a reference to the
                #   overall (shared) HTS
                problem_hts.assumptions = None
                problem_hts.lemmas = None

                # Compute the Cone Of Influence
                # Returns a *new* hts (not pointing to the original one anymore)
                if problem.coi:
                    if Logger.level(2):
                        timer = Logger.start_timer("COI")
                    hts = self.coi.compute(hts, prop)
                    if Logger.level(2):
                        Logger.get_timer(timer)

                if general_config.time:
                    timer_solve = Logger.start_timer(
                        "Problem %s" % problem.name, False)

                status, trace, traces, region = self.__solve_problem(
                    problem_hts, prop, lemmas, assumptions, problem)

                # set status for this problem
                problems_config.set_problem_status(problem, status)

                # TODO: Determine whether we need both trace and traces
                assert trace is None or traces is None, "Expecting either a trace or a list of traces"
                if trace is not None:
                    problem_traces = self.__process_trace(
                        hts, trace, general_config, problem)
                    problems_config.set_problem_traces(problem, problem_traces)

                if traces is not None:
                    traces_to_add = []
                    for trace in traces:
                        problem_trace = self.__process_trace(
                            hts, trace, general_config, problem)
                        for pt in problem_trace:
                            traces_to_add.append(pt)
                    problems_config.set_problem_traces(problem, traces_to_add)

                if problem.verification == VerificationType.PARAMETRIC:
                    assert region is not None
                    problems_config.set_problem_region(problem, region)

                if status is not None:
                    Logger.msg(" %s\n" % status, 0, not (Logger.level(1)))

                if (assume_if_true) and \
                   (status == VerificationStatus.TRUE) and \
                   (problem.assumptions == None) and \
                   (problem.verification == VerificationType.SAFETY):

                    # TODO: relax the assumption on problem.assumptions
                    #       can still add it, just need to make it an implication

                    ass_ts = TS("Previous assumption from property")
                    if TS.has_next(prop):
                        ass_ts.trans = prop
                    else:
                        ass_ts.invar = prop
                    # add assumptions to main system
                    problem_hts.reset_formulae()
                    problem_hts.add_ts(ass_ts)

                if general_config.time:
                    problems_config.set_problem_time(
                        problem, Logger.get_timer(timer_solve, False))

            except KeyboardInterrupt as e:
                Logger.msg("\b\b Skipped!\n", 0)
Exemple #5
0
 def iter_used_symbols(self):
     for cmd in self.script:
         if cmd.name == 'assert':
             for v in get_free_variables(cmd.args[0]):
                 yield v