def add_solar_features(df):
    return \
        (df
         .withColumn('declination_angle',
                     radians(-23.45
                             * cos(((2 * pi)/365) * (dayofyear('date') + 10))))
         .withColumn('diff_local_time_UTC', timezone_from_date('date'))
         .withColumn('d', (2 * pi * dayofyear('date')) / 365)
         .withColumn('equation_of_time',
                     -7.655 * sin(col('d'))
                     + 9.873 * sin(2 * col('d') + 3.588))
         .drop('d')
         .withColumn('time_correction',
                     4 * (col('loc_long') - (15 * col('diff_local_time_UTC')))
                     + col('equation_of_time'))
         .withColumn('local_solar_hour',
                     col('hour') + 0.5 + col('time_correction') / 60)
         .withColumn('hour_angle', 0.2618 * (col('local_solar_hour') - 12))
         .drop('diff_local_time_UTC', 'equation_of_time', 'time_correction',
               'local_solar_hour')
         .withColumn('solar_elevation',
                     degrees(asin(sin('declination_angle')
                                  * sin(radians('loc_lat'))
                                  + cos('declination_angle')
                                  * cos(radians('loc_lat'))
                                  * cos('hour_angle'))))
         .drop('declination_angle', 'hour_angle'))
Exemple #2
0
def add_solar_features(df):
    return (df.withColumn(
        "declination_angle",
        radians(-23.45 * cos(((2 * pi) / 365) * (dayofyear("date") + 10))),
    ).withColumn("diff_local_time_UTC", timezone_from_date("date")).withColumn(
        "d", (2 * pi * dayofyear("date")) / 365).withColumn(
            "equation_of_time",
            -7.655 * sin(col("d")) + 9.873 * sin(2 * col("d") + 3.588),
        ).drop("d").withColumn(
            "time_correction",
            4 * (col("loc_long") - (15 * col("diff_local_time_UTC"))) +
            col("equation_of_time"),
        ).withColumn(
            "local_solar_hour",
            col("hour") + 0.5 + col("time_correction") / 60).withColumn(
                "hour_angle", 0.2618 * (col("local_solar_hour") - 12)).drop(
                    "diff_local_time_UTC",
                    "equation_of_time",
                    "time_correction",
                    "local_solar_hour",
                ).withColumn(
                    "solar_elevation",
                    degrees(
                        asin(
                            sin("declination_angle") *
                            sin(radians("loc_lat")) +
                            cos("declination_angle") *
                            cos(radians("loc_lat")) * cos("hour_angle"))),
                ).drop("declination_angle", "hour_angle"))
Exemple #3
0
def distance(long1, lat1, long2, lat2):
    radius = 6371
    diff_lat = radians(lat2 - lat1)
    diff_long = radians(long2 - long1)
    a = sin(diff_lat / 2)**2 + cos(lat1) * cos(lat2) * sin(diff_long / 2)**2
    c = 2 * atan2(a**0.5, (1 - a)**0.5)
    return radius * c
Exemple #4
0
def distance(CLat, CLon, data, col_name):
    return data.withColumn('CLon', f.lit(CLon)).withColumn('CLat',f.lit(CLat)).withColumn("dlon", f.radians(f.col("CLon")) - f.radians(f.col("longitude"))).withColumn("dlat", f.radians(f.col("CLat")) - f.radians(f.col("latitude"))).withColumn(col_name, f.asin(f.sqrt(
                                         f.sin(f.col("dlat") / 2) ** 2 + f.cos(f.radians(f.col("latitude")))
                                         * f.cos(f.radians(f.col("CLat"))) * f.sin(f.col("dlon") / 2) ** 2
                                         )
                                    ) * 2 * 6371 * 1000) \
              .drop("dlon", "dlat",'CLon', 'CLat')
Exemple #5
0
def distance_intermediate_formula(lat1, long1, lat2, long2):
    """Returns spark expression computing intermediate result
    to compute the distance between to GPS coordinates
    Source: https://www.movable-type.co.uk/scripts/latlong.html
    """
    return pow(sin(radians(col(lat1) - col(lat2)) / 2),
               2) + (pow(sin(radians(col(long1) - col(long2)) / 2), 2) *
                     cos(radians(col(lat1))) * cos(radians(col(lat2))))
def computeDistances(spark, dataframe):
    df = dataframe.withColumn("lat1",F.radians(F.col("start_station_latitude"))).withColumn("lat2",F.radians(F.col("end_station_latitude")))\
        .withColumn("lon1",F.radians(F.col("start_station_longitude"))).withColumn("lon2",F.radians(F.col("end_station_longitude")))\
        .withColumn("distance",F.round(F.asin(F.sqrt(
            (-F.cos(F.col("lat2") - F.col("lat1"))*0.5 + 0.5) +
              F.cos(F.col("lat1"))*
                F.cos(F.col("lat2"))*
                (-F.cos(F.col("lon2") - F.col("lon1"))*0.5 + 0.5)))
                  *(2*earth_radius_in_meters/meters_per_mile),2))
    df = df.drop(F.col("lat1")).drop(F.col("lat2")).drop(F.col("lon1")).drop(
        F.col("lon2"))
    return df
def get_destinations(dfs, roam_dist=110, earth_radius=6372.795 * 1000):
    """
    Applies DBSCAN to extract the unique stop locations from a pyspark DataFrame

    :param x: DataFrame with ['id_client', 'latitude', 'longitude', "from", "to"]. Coordinates are in degrees.
    :param roam_dist: The stop location size in meters.
    :param earth_radius: The radius of the earth.
    :param group_results: If True, it groups by the cluster's location and id_client.
    :return: (pyspark DataFrame) If group_results=True: ['id_client', 'clatitude', 'clongitude', 'time_spent', 'frequency']
            (pyspark DataFrame) If group_results=False: ['id_client', 'latitude', 'longitude', 'clatitude', 'clongitude', 'from', 'to']
    """
    @pandas_udf(
        "userId string, state string, latitude double, longitude double, begin timestamp, end timestamp, clusterId integer, geohash6 string",
        PandasUDFType.GROUPED_MAP)
    def get_destinations(df):
        """
        Applies DBSCAN to stop locations

        :param x: 2D numpy array with latitude and longitude.
        :param from_to_array: 2D numpy array with from and to timestamps.
        :param roam_dist: The stop location size in meters.
        :param earth_radius: The radius of the earth.
        :return: (pandas DataFrame) ['latitude', 'longitude', 'clatitude', 'clongitude', 'from', 'to', 'time_spent']
        """
        db = DBSCAN(eps=roam_dist / earth_radius,
                    min_samples=1,
                    algorithm='ball_tree',
                    metric='haversine')
        df["clusterId"] = db.fit_predict(df[['latitude', 'longitude']])
        df['geohash6'] = df.apply(lambda x: pgh.encode(
            degrees(x.latitude), degrees(x.longitude), precision=6),
                                  axis=1)

        return df

    dfs = dfs.withColumn('latitude', F.radians('latitude'))
    dfs = dfs.withColumn('longitude', F.radians('longitude'))

    stops_dfs = dfs.groupby('userId', 'state').apply(get_destinations)

    w = Window().partitionBy('userId', 'clusterId')

    stops_dfs = stops_dfs.withColumn('clusterLatitude',
                                     F.mean('latitude').over(w))
    stops_dfs = stops_dfs.withColumn('clusterLongitude',
                                     F.mean('longitude').over(w))

    stops_dfs = stops_dfs.drop('latitude').drop('longitude')

    return stops_dfs
def calculate_bearing_degrees(latitude_1, longitude_1, latitude_2,
                              longitude_2):
    diff_longitude = F.radians(longitude_2 - longitude_1)

    r_latitude_1 = F.radians(latitude_1)
    r_longitude_1 = F.radians(longitude_1)
    r_latitude_2 = F.radians(latitude_2)
    r_longitude_2 = F.radians(longitude_2)

    y = F.sin(diff_longitude) * F.cos(r_longitude_2)
    x = (F.cos(r_latitude_1) * F.sin(r_latitude_2) -
         F.sin(r_latitude_1) * F.cos(r_latitude_2) * F.cos(diff_longitude))

    return F.degrees(F.atan2(x, y))
Exemple #9
0
def haversine(lng1: Column, lat1: Column, lng2: Column, lat2: Column):
    radius = 6378137
    #将度数转成弧度
    radLng1 = f.radians(lng1)
    radLat1 = f.radians(lat1)
    radLng2 = f.radians(lng2)
    radLat2 = f.radians(lat2)

    result = f.asin(
        f.sqrt(
            f.pow(f.sin((radLat1 - radLat2) / 2.0), 2) +
            f.cos(radLat1) * f.cos(radLat2) *
            f.pow(f.sin((radLng1 - radLng2) / 2.0), 2))) * 2.0 * radius
    return result
def add_distance_column(dfs, order_column='timestamp'):
    # Radians lat/lon
    dfs = dfs.withColumn('latitude2', F.radians('latitude')).withColumn(
        'longitude2', F.radians('longitude'))

    # Groups GPS locations into chucks. A chunk is formed by groups of points that are distant no more than roam_dist
    w = Window.partitionBy(['userID']).orderBy(order_column)
    dfs = dfs.withColumn('next_lat', F.lead('latitude2', 1).over(w))
    dfs = dfs.withColumn('next_lon', F.lead('longitude2', 1).over(w))

    # Haversine distance
    dfs = dfs.withColumn('distance_next', EARTH_RADIUS * 2 * F.asin(F.sqrt(
        F.pow(F.sin((col('next_lat') - col('latitude2')) / 2.0), 2) + F.cos('latitude2') * F.cos('next_lat') * F.pow(
            F.sin((col('next_lon') - col('longitude2')) / 2.0), 2))))
    dfs = dfs.withColumn('distance_prev', F.lag('distance_next', default=0).over(w)).drop(
        'latitude2').drop('longitude2').drop('next_lon').drop('next_lat').drop('distance_next')
    return dfs
Exemple #11
0
def add_haversine_distances(df, lat_a, lon_a, lat_b, lon_b):
    """
    Although the Haversine distance is readily available from sklearn.metrics.pairwise.haversine_distances, the
    implementation below makes use only of in-built PySpark functions, so should be more efficient than passing the
    sklearn function in as a UDF.

    :param df:
    :param lat_a:
    :param lon_a:
    :param lat_b:
    :param lon_b:
    :return:
    """

    earth_radius_km = 6371.0

    return \
        df \
            .withColumn('dist_lat', F.radians(lat_a) - F.radians(lat_b)) \
            .withColumn('dist_lon', F.radians(lon_a) - F.radians(lon_b)) \
            .withColumn('area',
                        (F.sin(F.col('dist_lat') / 2) ** 2)
                        + (F.cos(F.radians(lat_a))
                           * F.cos(F.radians(lat_b))
                           * (F.sin(F.col('dist_lon') / 2) ** 2)
                           )
                        ) \
            .withColumn('central_angle', 2 * F.asin(F.sqrt(F.col('area')))) \
            .withColumn('distance_km', F.col('central_angle') * F.lit(earth_radius_km)) \
            .drop('dist_lat', 'dist_lon', 'area', 'central_angle')
Exemple #12
0
def distance(lat1, lon1, lat2, lon2, unit='miles'):
    '''
    Measure simple haversine distance between two points. Default unit = miles.
    '''
    units = {
        'miles': 3963.19,
        'kilometers': 6378.137,
        'meters': 6378137,
        'feet': 20902464
    }

    phi_1 = py.radians(lat1)
    phi_2 = py.radians(lat2)
    delta_phi = py.radians(lat2 - lat1)
    delta_lambda = py.radians(lon2 - lon1)

    area = py.sin(delta_phi/2.0) ** 2 \
    + py.cos(phi_1) * py.cos(phi_2) * \
    py.sin(delta_lambda / 2.0) ** 2

    central_angle = 2 * py.asin((area**0.5))
    radius = units[unit.lower()]

    return py.abs(py.round((central_angle * radius), 4))
Exemple #13
0
def join_and_analyze(df_poi,df_sample):
    """ Joins the Requests data and POI list data, calculates distance between POI Centers
    and retains the record with the minimum distance to a particular POI center
    
    Parameters: df_poi: POI List datafarme 
                df_sample: Requests dataframe
    
    """
    # Since there are no matching fields between the data, cartesian product is done to combine the datasets
    df_joined = df_sample.crossJoin(df_poi)
    # Caching to memory
    df_joined.cache()
    # Applying the Haversine formula to determine distance between coordinate pairs
    df_joined = df_joined.withColumn("a", (
    F.pow(F.sin(F.radians(F.col("POI_Latitude") - F.col("Latitude")) / 2), 2) +
    F.cos(F.radians(F.col("Latitude"))) * F.cos(F.radians(F.col("POI_Latitude"))) *
    F.pow(F.sin(F.radians(F.col("POI_Longitude") - F.col("Longitude")) / 2), 2)
    )).withColumn("distance", F.atan2(F.sqrt(F.col("a")), F.sqrt(-F.col("a") + 1)) * 2 * 6371)
    
    # Applying window function to retain the records with the least distance to a POI center
    w = Window.partitionBy('_ID')
    df_joined = df_joined.withColumn('min', F.min('distance').over(w))    .where(F.col('distance') == F.col('min'))    .drop('min').drop('a')

    return df_joined
    # Join predictions into one data frame
    pred_df = pred_df \
        .join(predictions['longitude'], on='ID') \
        .drop('timeAtServer', 'aircraft') \
        .join(predictions['geoAltitude'], on='ID') \
        .drop('features')

    pred_df = pred_df \
        .withColumn("pred", F.array('pred_latitude', 'pred_longitude', 'pred_geoAltitude'))
    #.drop('pred_latitude', 'pred_longitude', 'pred_geoAltitude')

    pred_df = pred_df.join(df_y, on='ID')

    # Calculation of the distance error
    pred_df = pred_df \
        .withColumn('N1', 6378137 / (F.sqrt(1 - 8.1819190842622e-2**2 * F.sin(F.radians(F.col('latitude'))**2)))) \
        .withColumn('N2', 6378137 / (F.sqrt(1 - 8.1819190842622e-2**2 * F.sin(F.radians(F.col('pred_latitude'))**2))))

    pred_df = pred_df \
        .withColumn('x1', (F.col('N1') + F.col('geoAltitude')) * F.cos(F.radians(F.col('latitude'))) * F.cos(F.radians(F.col('longitude')))) \
        .withColumn('y1', (F.col('N1') + F.col('geoAltitude')) * F.cos(F.radians(F.col('latitude'))) * F.sin(F.radians(F.col('longitude')))) \
        .withColumn('z1', ((1 - 8.1819190842622e-2**2) * F.col('N1') + F.col('geoAltitude')) * F.sin(F.radians(F.col('latitude')))) \
        .withColumn('x2', (F.col('N2') + F.col('pred_geoAltitude')) * F.cos(F.radians(F.col('pred_latitude'))) * F.cos(F.radians(F.col('pred_longitude')))) \
        .withColumn('y2', (F.col('N2') + F.col('pred_geoAltitude')) * F.cos(F.radians(F.col('pred_latitude'))) * F.sin(F.radians(F.col('pred_longitude')))) \
        .withColumn('z2', ((1 - 8.1819190842622e-2**2) * F.col('N2') + F.col('pred_geoAltitude')) * F.sin(F.radians(F.col('pred_latitude'))))

    pred_df = pred_df \
        .withColumn('dist_error', F.sqrt((F.col('x1') - F.col('x2'))**2 + \
                                           (F.col('y1') - F.col('y2'))**2 + \
                                           (F.col('z1') - F.col('z2'))**2) / 1000) \
        .drop('latitude', 'longitude', 'geoAltitude') \
Exemple #15
0
    gal = gal.filter(gal["RA"] > args.ramin)
if args.ramax < 360:
    gal = gal.filter(gal["RA"] < args.ramax)

if args.decmin > -90:
    gal = gal.filter(gal["Dec"] > args.decmin)
if args.decmax < 90:
    gal = gal.filter(gal["Dec"] < args.decmax)

#gal=gal.cache()
Ngal = gal.count()
print("Ndata={}M".format(Ngal / 1e6))

#XYZ transform
#theta/phi is better than ra/dec
gal=gal.withColumn("theta",F.radians(90-gal['Dec'])).\
        withColumn("phi",F.radians(90-gal['RA']))

# distance is tricky
# LCDM planck (je crois)

#add r (linear intrep)
Nz = 1000
zmax = 3.
dz = zmax / (Nz - 1)
ZZ = np.linspace(0, 3, Nz)
CHI = chi_vec(ZZ)


#linear interp
@pandas_udf('float', PandasUDFType.SCALAR)
Exemple #16
0
def main():
    # Parameters for the algorithm
    roam_dist = 100  # meters
    min_stay = 10  # minutes
    # Parameters for the paths
    input_path = '/path_to_parquet'  # parquet file
    output_path = '/path_to_parquet_out'  # parquet file

    spark = SparkSession \
     .builder \
     .appName("Stop locations") \
     .getOrCreate()

    # Read data
    source_df = spark.read.parquet(input_path)
    source_df = source_df.select(
        'user_id', 'timestamp',
        F.radians('latitude').alias('lat'),
        F.radians('longitude').alias("lon")).orderBy('timestamp')
    source_df.cache()

    # Filter out all the data that is not necessary (e.g. positions equals to others in a time-distance less than min_stay
    w = Window.partitionBy(['user_id']).orderBy('timestamp')

    source_df = source_df.select("user_id", "timestamp", "lat", "lon",
                                 F.lead("lat", 1).over(w).alias("next_lat"),
                                 F.lead("lon", 1).over(w).alias("next_lon"))

    dist_df = source_df.withColumn(
        "distance_next", EARTH_RADIUS * 2 * F.asin(
            F.sqrt(
                F.pow(F.sin((col("next_lat") - col("lat")) / 2.0), 2) +
                F.cos("lat") * F.cos("next_lat") *
                F.pow(F.sin((col("next_lon") - col("lon")) / 2.0), 2))))

    dist_df = dist_df.withColumn("distance_prev",
                                 F.lag("distance_next").over(w))
    exclude_df = dist_df.where((
        (col("distance_next") < 5) & (col("distance_prev") < 5))
                               | ((col("distance_next") > roam_dist)
                                  & (col("distance_prev") > roam_dist)))

    df = source_df.join(exclude_df, ['user_id', 'timestamp'],
                        "left_anti").select("user_id", "timestamp", "lat",
                                            "lon")

    # Transform to RDD, in order to apply the function get_stop_location
    # RDD that contains: (user_id, [timestamp, lat, lon, lat_degrees, lon_degrees])
    df_rdd = df.orderBy(['user_id', 'timestamp']).rdd.map(tuple)
    df_rdd = df_rdd.map(lambda x: (x[0], [[x[1], x[2], x[3]]]))
    # RDD that contains: (user_id, [[timestamp, lat, lon], ..., [timestamp, lat, lon]]), sorted by timestamp
    grouped_rdd = df_rdd.reduceByKey(lambda x, y: x + y)

    stop_locations_rdd = grouped_rdd.map(lambda x: (
        x[0],
        get_stop_location(
            x[1], min_stay_duration=min_stay, roaming_distance=roam_dist)))

    stop_locations_rdd = stop_locations_rdd.flatMapValues(lambda x: x).map(
        lambda x: (x[0], x[1][0], x[1][1], x[1][2], x[1][3]))

    # Output schema
    schema = StructType([
        StructField('user_id', StringType(), False),
        StructField('lat', DoubleType(), False),
        StructField('lon', DoubleType(), False),
        StructField('from', TimestampType(), False),
        StructField('to', TimestampType(), False)
    ])
    result_df = spark.createDataFrame(stop_locations_rdd, schema)

    result_df = result_df.withColumn('lat', F.degrees('lat'))
    result_df = result_df.withColumn('lon', F.degrees('lon'))

    result_df.write.save(output_path)
Exemple #17
0
    r = 6371  # radius of earth in km
    for poi, (lat, lon) in poi_map.items():
        print(poi, lat, lon)
        df = df.withColumn(
            "dist_to_{0:s}".format(poi),
            F.array([
                F.sqrt((F.col("Longitude") - F.lit(lat))**2 +
                       (F.col("Latitude") - F.lit(lon))**2),
                F.lit(poi)
            ]))
        df = df.withColumn(
            "h_dist_to_{0:s}".format(poi),
            F.array([
                2.0 * r * F.asin(
                    F.sqrt(
                        F.sin(0.5 * (F.radians(F.col("Latitude")) -
                                     F.radians(F.lit(lat))))**2 +
                        F.cos(F.radians(F.col("Latitude"))) *
                        F.cos(F.radians(F.lit(lat))) *
                        F.sin(0.5 * (F.radians(F.col("Longitude")) -
                                     F.radians(F.lit(lon))))**2)),
                F.lit(poi)
            ]))

    # Find the nearest POI
    df = (df.withColumn(
        "label",
        F.least(*[F.col("dist_to_{0:s}".format(poi))
                  for poi in poi_map])).drop(
                      *["dist_to_{0:s}".format(poi) for poi in poi_map]))
Exemple #18
0
short_station_coord = short_station.select('date', 'hour', 'name', 'latitude',
                                           'longitude')

short_station_coord = short_station_coord.withColumnRenamed('name', "start_station_name")\
    .withColumnRenamed('latitude', "start_latitude").withColumnRenamed('longitude', "start_longitude")

# join stortage stations and overload stations
df_join = over_station_coord.join(
    short_station_coord,
    ((over_station_coord['near_date'] == short_station_coord['date'])
     & (over_station_coord['near_hour'] == short_station_coord['hour'])))

# Distance
df_join = df_join.withColumn(
    'latitude_distance',
    functions.radians(over_station_coord['near_latitude']) -
    functions.radians(short_station_coord['start_latitude']))

df_join = df_join.withColumn(
    'longitude_distance',
    functions.radians(over_station_coord['near_longitude']) -
    functions.radians(short_station_coord['start_longitude']))

df_join = df_join.withColumn(
    'a',
    (pow(functions.sin('latitude_distance'), 2) +
     functions.cos(functions.radians(short_station_coord['start_latitude'])) *
     functions.cos(functions.radians(over_station_coord['near_latitude'])) *
     (pow(functions.sin('longitude_distance'), 2))))

df_join = df_join.withColumn(
Exemple #19
0
def dist(long_x, lat_x, long_y, lat_y):
    return acos(
        sin(radians(lat_x)) * sin(radians(lat_y)) + 
        cos(radians(lat_x)) * cos(radians(lat_y)) * 
            cos(radians(long_x) - radians(long_y))
    ) * lit(6371.0)
Exemple #20
0
def main():
    """Main function"""

    # Get args
    args = get_args()

    # Azure credentials
    sas_token = args.sas
    storage_account_name = args.storage
    container_in = args.container_in
    container_out = args.container_out

    azure_accounts = list()
    azure_accounts.append({
        "storage": storage_account_name,
        "sas": sas_token,
        "container": container_in
    })
    azure_accounts.append({
        "storage": storage_account_name,
        "sas": sas_token,
        "container": container_out
    })

    # VM
    cores = args.vm_cores
    ram = args.vm_ram
    shuffle_partitions = args.shuffle_partitions

    # Geohash file path
    geohash_path = args.geohashpath

    # Date, country, prefix
    country = args.country
    date_string = args.date
    prefix = args.prefix

    # Set date variables
    day_time = datetime.strptime(date_string, "%Y-%m-%d")
    year = day_time.year
    month = day_time.month
    day = day_time.day

    # stop config
    seconds = 60
    accuracy = args.accuracy
    roam_dist = args.roam_dist
    min_stay = args.min_stay
    overlap_hours = args.overlap_hours

    # Path in - path out
    blob_in = f"wasbs://{container_in}@{storage_account_name}.blob.core.windows.net/preprocessed/{country}/"
    path_out = f"stoplocation-v{VERSION}_r{roam_dist}-s{min_stay}-a{accuracy}-h{overlap_hours}/{country}"

    if prefix:
        path_out = f"stoplocation-v{VERSION}_prefix_r{roam_dist}-s{min_stay}-a{accuracy}-h{overlap_hours}/{country}"

    # config spark
    conf = getSparkConfig(cores, ram, shuffle_partitions, azure_accounts)

    # Create spark session
    sc = SparkContext(conf=conf).getOrCreate()
    sqlContext = SQLContext(sc)
    spark = sqlContext.sparkSession

    # Init azure client
    blob_service_client = BlobServiceClient.from_connection_string(
        CONN_STRING.format(storage_account_name, sas_token))

    #  build keys, date is mandatory, prefix opt
    partition_key = "year={}/month={}/day={}".format(year, month, day)
    if prefix:
        partition_key = "year={}/month={}/day={}/prefix={}".format(
            year, month, day, prefix)

    blob_base = "{}/{}".format(path_out, partition_key)

    #
    # check for skip
    # TODO
    #
    skip = False

    print("process " + partition_key + " to " + blob_base)
    start_time = time.time()
    local_dir = LOCAL_PATH + partition_key
    print("write temp to " + local_dir)

    # cleanup local if exists
    if (os.path.isdir(local_dir)):
        map(os.unlink,
            (os.path.join(local_dir, f) for f in os.listdir(local_dir)))

    # TODO cleanup remote if exists

    # Output schema
    schema = ArrayType(
        StructType([
            #StructField('device_type', IntegerType(), False),
            StructField('serial', IntegerType(), False),
            StructField('latitude', DoubleType(), False),
            StructField('longitude', DoubleType(), False),
            StructField('begin', TimestampType(), False),
            StructField('end', TimestampType(), False),
            StructField('personal_area', BooleanType(), False),
            StructField('distance', DoubleType(), False),
            StructField('geohash6', StringType(), False),
            StructField('after_stop_distance', DoubleType(), False)
        ]))

    spark_get_stop_location = udf(
        lambda z: get_stop_location(z, roam_dist, min_stay), schema)

    # Geohash file
    print("read geohash parquet")
    csv_time = time.time()
    dfs_us_states = spark.read.format("parquet").load(geohash_path)
    # states = [s.STUSPS for s in dfs_us_states.select(
    #     'STUSPS').distinct().collect()]

    dfs_us_states = dfs_us_states.select(
        col('STUSPS').alias('state'),
        col('geohash').alias('geohash5'))
    dfs_us_states = dfs_us_states.drop_duplicates(subset=['geohash5'])

    # Input dataset
    print("read dataset table")
    read_time = time.time()

    # dfs = spark.read.format("parquet").load(blob_in)

    # # apply partition filter
    # dfs_partition = dfs.where(
    #     f"(year = {year} AND month = {month} AND day = {day}  AND prefix = '{prefix}')")

    # read only partition to reduce browse time
    dfs_cur_partition = spark.read.format("parquet").load(
        f"{blob_in}/{partition_key}")

    # lit partition filters as data
    dfs_cur_partition = dfs_cur_partition.withColumn('year', F.lit(year))
    dfs_cur_partition = dfs_cur_partition.withColumn('month', F.lit(month))
    dfs_cur_partition = dfs_cur_partition.withColumn('day', F.lit(day))
    if prefix:
        dfs_cur_partition = dfs_cur_partition.withColumn(
            'prefix', F.lit(prefix))

    # read next day for overlap
    next_day = day_time + timedelta(days=1)
    next_partition_key = "year={}/month={}/day={}".format(
        next_day.year, next_day.month, next_day.day)
    if prefix:
        next_partition_key = "year={}/month={}/day={}/prefix={}".format(
            next_day.year, next_day.month, next_day.day, prefix)

    dfs_next_partition = spark.read.format("parquet").load(
        f"{blob_in}/{next_partition_key}")
    dfs_next_partition = dfs_next_partition.where(
        F.hour("timestamp") <= (overlap_hours - 1))

    # lit partition filters as data
    dfs_next_partition = dfs_next_partition.withColumn('year',
                                                       F.lit(next_day.year))
    dfs_next_partition = dfs_next_partition.withColumn('month',
                                                       F.lit(next_day.month))
    dfs_next_partition = dfs_next_partition.withColumn('day',
                                                       F.lit(next_day.day))
    if prefix:
        dfs_next_partition = dfs_next_partition.withColumn(
            'prefix', F.lit(prefix))

    # union with overlap
    dfs_partition = dfs_cur_partition.unionAll(dfs_next_partition)

    print("process with spark")
    spark_time = time.time()

    # select columns
    dfs_partition = dfs_partition.select(
        'prefix', 'userID', 'timestamp', 'latitude', 'longitude',
        (F.when(col('opt1') == 'PERSONAL_AREA',
                True).otherwise(False)).alias('personal_area'), 'accuracy')

    # keep only data with required accuracy
    dfs_partition = dfs_partition.where((col('accuracy') <= accuracy)
                                        & (col('accuracy') >= 0))

    # stats - enable only for debug!
    # num_inputs = dfs_partition.count()
    # print(f"read {num_inputs} rows from "+partition_key)

    # Lowering the granularity to 1 minutes

    # explicitely convert to timestamp
    #dfs_partition = dfs_partition.withColumn('timestamp', col('timestamp').cast('timestamp'))
    seconds_window = F.unix_timestamp(
        'timestamp') - F.unix_timestamp('timestamp') % seconds
    w = Window().partitionBy('userID', seconds_window).orderBy('accuracy')
    dfs_partition = dfs_partition.withColumn(
        'rn',
        F.row_number().over(w).cast('int')).where(col('rn') == 1).drop('rn')

    # Radians lat/lon
    dfs_partition = dfs_partition.withColumn('latitude',
                                             F.radians('latitude')).withColumn(
                                                 'longitude',
                                                 F.radians('longitude'))

    # Groups GPS locations into chucks. A chunk is formed by groups of points that are distant no more than roam_dist
    w = Window.partitionBy(['prefix', 'userID']).orderBy('timestamp')
    dfs_partition = dfs_partition.withColumn('next_lat',
                                             F.lead('latitude', 1).over(w))
    dfs_partition = dfs_partition.withColumn('next_lon',
                                             F.lead('longitude', 1).over(w))

    # Haversine distance
    dfs_partition = dfs_partition.withColumn(
        'distance_next', EARTH_RADIUS * 2 * F.asin(
            F.sqrt(
                F.pow(F.sin((col('next_lat') - col('latitude')) / 2.0), 2) +
                F.cos('latitude') * F.cos('next_lat') *
                F.pow(F.sin((col('next_lon') - col('longitude')) / 2.0), 2))))
    dfs_partition = dfs_partition.withColumn(
        'distance_prev',
        F.lag('distance_next', default=0).over(w))

    # Chunks
    dfs_partition = dfs_partition.withColumn(
        'chunk',
        F.when(col('distance_prev') > roam_dist, 1).otherwise(0))

    windowval = (Window.partitionBy(
        'prefix',
        'userID').orderBy('timestamp').rangeBetween(Window.unboundedPreceding,
                                                    0))
    dfs_partition = dfs_partition.withColumn(
        'chunk',
        F.sum('chunk').over(windowval).cast('int'))

    # Remove chunks of the next day
    w = Window.partitionBy(['prefix', 'userID', 'chunk'])
    dfs_partition = dfs_partition.withColumn(
        'min_timestamp', F.dayofmonth(F.min('timestamp').over(w)))
    dfs_partition = dfs_partition.where(
        col('min_timestamp') == day).drop('min_timestamp')

    # Get the stops
    result_df = dfs_partition.groupBy('prefix', 'userID', 'chunk').agg(
        F.array_sort(
            F.collect_list(
                F.struct('timestamp', 'latitude', 'longitude', 'distance_prev',
                         'personal_area'))).alias('gpsdata'),
        F.sum('distance_prev').alias('dist_sum'))
    result_df = result_df.withColumn('gpsdata',
                                     spark_get_stop_location('gpsdata'))

    result_df = result_df.select('userID', 'chunk',
                                 F.explode_outer('gpsdata').alias('e'),
                                 'dist_sum')
    result_df = result_df.select(
        'userID', 'chunk',
        col('e.latitude').alias('latitude'),
        col('e.longitude').alias('longitude'),
        col('e.begin').alias('begin'),
        col('e.end').alias('end'),
        col('e.personal_area').alias('personal_area'),
        col('e.geohash6').alias('geohash6'),
        col('e.serial').alias('serial'),
        col('e.distance').alias('stop_distance'),
        col('e.after_stop_distance').alias('after_stop_distance'), 'dist_sum')
    result_df = result_df.fillna(0, subset=['after_stop_distance'])

    # Remove all those stop that start the next day
    result_df = result_df.where((col('begin').isNull())
                                | (F.dayofmonth('begin') != next_day.day))

    result_df = result_df.withColumn(
        'isStop',
        F.when(col('serial').isNotNull(), 1).otherwise(0))

    result_df = result_df.withColumn(
        'dist_sum',
        F.when(col('isStop') == 1,
               col('stop_distance')).otherwise(col('dist_sum')))

    windowval = (Window.partitionBy('userId').orderBy(
        'chunk', 'serial').rowsBetween(Window.currentRow,
                                       Window.unboundedFollowing))
    result_df = result_df.withColumn('isStop_cum',
                                     F.sum('isStop').over(windowval))

    result_df = result_df.groupBy('userId', 'isStop_cum').agg(
        F.first('latitude', ignorenulls=True).alias('latitude'),
        F.first('longitude', ignorenulls=True).alias('longitude'),
        F.first('begin', ignorenulls=True).alias('begin'),
        F.first('end', ignorenulls=True).alias('end'),
        F.first('personal_area', ignorenulls=True).alias('personal_area'),
        F.first('geohash6', ignorenulls=True).alias('geohash6'),
        F.sum('dist_sum').alias('prev_travelled_distance'),
        F.sum('after_stop_distance').alias('after_stop_distance'))

    # compute next distance, which is null if it's the last
    windowval = Window.partitionBy('userId').orderBy(F.desc('isStop_cum'))
    result_df = result_df.withColumn(
        'next_travelled_distance',
        F.lead('prev_travelled_distance').over(windowval))
    result_df = result_df.withColumn(
        'next_travelled_distance',
        F.when((col('next_travelled_distance').isNull()) &
               (col('after_stop_distance') > 0),
               col('after_stop_distance')).otherwise(
                   col('next_travelled_distance')))

    # Drop nulls
    result_df = result_df.dropna(subset=['latitude']).drop('isStop_cum')

    # Transform latitude and longitude back to degrees
    result_df = result_df.withColumn('latitude', F.degrees('latitude'))
    result_df = result_df.withColumn('longitude', F.degrees('longitude'))

    # US states
    result_df = result_df.withColumn(
        "geohash5", F.expr("substring(geohash6, 1, length(geohash6)-1)"))
    result_df = result_df.join(F.broadcast(dfs_us_states),
                               on="geohash5",
                               how="inner").drop('geohash5')

    # lit partition data - enable only if added to partitionBy
    # result_df = result_df.withColumn('year', F.lit(year))
    # result_df = result_df.withColumn('month', F.lit(month))
    # result_df = result_df.withColumn('day', F.lit(day))

    # write
    out_partitions = len(US_STATES)
    result_df.repartition(out_partitions, "state").write.partitionBy(
        "state").format('parquet').mode("overwrite").save(local_dir + "/")

    # stats - enable only for debug!
    # num_records = result_df.count()
    # print(f"written {num_records} rows to "+local_dir)

    # if num_records == 0:
    #     raise Exception("Zero rows output")

    print("upload local data to azure")
    upload_time = time.time()

    # upload parts over states
    for state in US_STATES:
        print(f"upload files for {state}")
        state_dir = local_dir + "/state=" + state
        state_key = f"{partition_key}/state={state}/"

        if (os.path.isdir(state_dir)):
            files = [
                filename for filename in os.listdir(state_dir)
                if filename.startswith("part-")
            ]

            if len(files) > 0:

                for file_local in files:
                    file_path = state_dir + "/" + file_local
                    part_num = int(file_local.split('-')[1])
                    part_key = '{:05d}'.format(part_num)
                    # fix name as static hash to be reproducible
                    filename_hash = hashlib.sha1(
                        str.encode(state_key + part_key)).hexdigest()

                    blob_key = "{}/state={}/part-{}-{}.snappy.parquet".format(
                        blob_base, state, part_key, filename_hash)

                    print("upload " + file_path + " to " + container_out +
                          ":" + blob_key)

                    blob_client = blob_service_client.get_blob_client(
                        container_out, blob_key)

                    with open(file_path, "rb") as data:
                        blob_client.upload_blob(data, overwrite=True)

                    # cleanup
                    os.remove(file_path)
            else:
                print(f"no files to upload for {state}")

        else:
            print(f"missing partition for {state}")

    print("--- {} seconds elapsed ---".format(int(time.time() - start_time)))
    print()
    stop_time = time.time()
    spark.stop()

    end_time = time.time()
    print("Done in {} seconds (csv:{} read:{} spark:{} upload:{} stop:{})".
          format(int(end_time - start_time), int(read_time - csv_time),
                 int(spark_time - read_time), int(upload_time - spark_time),
                 int(stop_time - upload_time), int(end_time - stop_time)))
    print('Done.')
lowLimit = 0
upperLimit = lowLimit + iIncrements
bOverwrite = True

while lowLimit <= mids_total:
    upperLimit = mids_total if upperLimit > mids_total else upperLimit
    print("{}:----- Range: {} - {}".format(getDT(), lowLimit, upperLimit))

    df_mrch_in_lat_range = df_mrch_in_lat.filter(
        F.col("rn").between(lowLimit, upperLimit))

    print("{}:    ----- Join merchants - competitors within 100 miles -----".
          format(getDT()))
    df_mid_comp_dist = df_mrch_in_lat_range \
     .join(df_mid_red_excl_lat_lon, (df_mrch_in_lat_range.mrch_mcc == df_mid_red_excl_lat_lon.sic) ) \
     .withColumn("distance", F.round(3958*F.acos(F.sin(F.radians(F.col("latitude")))*F.sin(F.radians(F.col("comp_lat")))+F.cos(F.radians(F.col("latitude")))*F.cos(F.radians(F.col("comp_lat")))*F.cos(F.radians(F.col("comp_lon"))-F.radians(F.col("longitude")))) ,3)  ) \
     .filter((F.col("merchant_id")!=F.col("comp_mid")) & (F.col("distance")<=100)  ) \
     .select('merchant_id', F.col('mrch_mcc').alias('mcc'), 'latitude', 'longitude', 'comp_mid', 'comp_lat', 'comp_lon', 'distance')

    print("{}:    ----- Join df_mid_comp_dist & df_mrch_tran -----".format(
        getDT()))
    df_mid_comp_sales = df_mid_comp_dist.join(df_mrch_tran, ['comp_mid','mcc']) \
     .select('merchant_id', 'comp_mid','distance','sales', 'sales_cnt','mcc')

    print("{}:    ----- Write to {}.trade_area_compl_mcc_mid_dist_sales -----".
          format(getDT(), sDBName))
    df_mid_comp_sales.write.insertInto(
        "{}.trade_area_compl_mcc_mid_dist_sales".format(sDBName),
        overwrite=bOverwrite)

    bOverwrite = False
def geodistance(df, target_name,lng1, lat1, lng2, lat2):
  result =  df.withColumn("dlon", radians(col(lng1)) - radians(col(lng2))) \
    .withColumn("dlat", radians(col(lat1)) - radians(col(lat2))) \
    .withColumn(target_name, asin(sqrt(sin(col("dlat") / 2) ** 2 + cos(radians(col(lat2)))* cos(radians(col(lat1))) * sin(col("dlon") / 2) ** 2)) * 2 * 3963 * 5280) \
    .drop("dlon", "dlat")
  return result
        .withColumn("time2", F.concat(F.col("null_col"),F.col("time2")))

    # explodes all array columns
    d1 = d.withColumn("new", F.arrays_zip("heart_rate","timestamp","latitude","longitude","lat2","long2","time2"))\
            .withColumn("new", F.explode("new"))\
            .select("userId","id",
                    F.col("new.heart_rate").alias("heart_rate"),
                    F.col("new.timestamp").alias("timestamp"),
                    F.col("new.latitude").alias("lat"),
                    F.col("new.longitude").alias("long"),
                    F.col("new.lat2").alias("lat2"),
                    F.col("new.long2").alias("long2"),
                    F.col("new.time2").alias("time2"))

    # haversine formula, calculates distance and speed between two points
    d2 = d1.withColumn("distance", 3956 *(2 * F.asin(F.sqrt(F.sin((F.radians("lat") - F.radians("lat2"))/2)**2
                                    + F.cos(F.radians("lat")) * F.cos(F.radians("lat2")) * F.sin((F.radians("long")
                                    - F.radians("long2"))/2)**2))))\
           .withColumn("speed", F.col("distance")/((F.col("timestamp") - F.col("time2"))/3600))

    d2 = d2.fillna({"speed": "0"})

    # aggregations that compute metrics related to an individual bike trip
    query = d2.groupBy("id", "userid").agg(
        F.round(F.mean("speed"), 2).alias("avgspeed"),
        F.round(F.max("speed"), 2).alias("max_speed"),
        F.round(F.mean("heart_rate")).cast("integer").alias("avg_heart_rate"),
        F.max("heart_rate").alias("max_heart_rate"),
        F.round(F.sum("distance"), 2).alias("distance"),
        conv_sec_udf(F.last("timestamp") -
                     F.first("timestamp")).alias("duration"),