Exemple #1
0
print "Time for constructing the matrix using poisson2d        : %8.2f sec" % (time.clock() - t1,)


A = L.to_csr()
S = L.to_sss()
print L.nnz
print S.nnz
print A.nnz
b = np.ones(n * n, "d")

# -----------------------------------------------------------------------------

t1 = time.clock()

x = np.empty(n * n, "d")
info, iter, relres = pcg(S, b, x, tol, 2000)
print "info=%d, iter=%d, relres=%e" % (info, iter, relres)

print "Solve time using SSS matrix: %8.2f s" % (time.clock() - t1)

print "norm(x) = %g" % np.linalg.norm(x)

r = np.empty(n * n, "d")
S.matvec(x, r)
r = b - r
print "norm(b - A*x) = %g" % np.linalg.norm(r)

print x[0:10]

# -----------------------------------------------------------------------------
Exemple #2
0
L = poisson2d_vec_sym_blk(N)
S = L.to_sss()

b = np.ones(N*N, 'd')

print 'Solving 2D-Laplace equation using PCG and SSOR preconditioner with variable omega'
print
print 'omega    nit    time       resid' 
print '--------------------------------' 

for omega in [0.1*(i+1) for i in range(20)]:

    K_ssor = precon.ssor(S, omega, SSOR_STEPS)
    t1 = time.clock()

    x = np.empty(N*N, 'd')
    info, iter, relres = pcg(S, b, x, TOL, MAXIT, K_ssor)

    elapsed_time = time.clock() - t1

    r = np.zeros(N*N, 'd')
    S.matvec(x, r)
    r = b - r
    res_nrm2 = np.linalg.norm(r)

    if info == 0:
        iter_str = str(iter)
    else:
        iter_str = '---'
    print '%5.1f  %5s  %6.2f  %10.3e' % (omega, iter_str, elapsed_time, res_nrm2)
Exemple #3
0
A.matvec(x, y)
print y
print 'norm(y) = ', math.sqrt(np.add.reduce(y))

##A.matvec_transp(x, z)
##print z
##print 'norm(z) = ', math.sqrt(np.add.reduce(z))

L = spmatrix.ll_mat(10, 10)
for i in range(10):
    L[i, i] = float(i + 1)
A = L.to_csr()
print A
x = np.zeros(10, 'd')
b = np.ones(10, 'd')
info, iter, relres = pcg(A, b, x, 1e-8, 100)
print info, iter, relres
print x
if (info != 0):
    print >> sys.stderr, 'cg not converged'

L2 = L.copy()
x = np.zeros(10, 'd')
info, iter, relres = pcg(A, b, x, 1e-8, 100)
print info, iter, relres

# -----------------------------------------------------------
print 'remove test'
n = 100
L = spmatrix.ll_mat(n, n)
def pcg(*args, **kwargs):
    return  krylov.pcg(*args, **kwargs)
def pcg(*args, **kwargs):
    return krylov.pcg(*args, **kwargs)
Exemple #6
0
print 'Time for constructing the matrix using poisson2d        : %8.2f sec' % (
    time.clock() - t1, )

A = L.to_csr()
S = L.to_sss()
print L.nnz
print S.nnz
print A.nnz
b = np.ones(n * n, 'd')

# -----------------------------------------------------------------------------

t1 = time.clock()

x = np.empty(n * n, 'd')
info, iter, relres = pcg(S, b, x, tol, 2000)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Solve time using SSS matrix: %8.2f s' % (time.clock() - t1)

print 'norm(x) = %g' % np.linalg.norm(x)

r = np.empty(n * n, 'd')
S.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % np.linalg.norm(r)

print x[0:10]

# -----------------------------------------------------------------------------
Exemple #7
0
A.matvec(x, y)
print y
print 'norm(y) = ', math.sqrt(np.add.reduce(y))

##A.matvec_transp(x, z)
##print z
##print 'norm(z) = ', math.sqrt(np.add.reduce(z))

L = spmatrix.ll_mat(10,10)
for i in range(10):
    L[i,i] = float(i+1)
A = L.to_csr()
print A
x = np.zeros(10, 'd')
b = np.ones(10, 'd')
info, iter, relres = pcg(A, b, x, 1e-8, 100)
print info, iter, relres
print x
if (info != 0):
    print >> sys.stderr, 'cg not converged'

L2 = L.copy()
x = np.zeros(10, 'd')
info, iter, relres = pcg(A, b, x, 1e-8, 100)
print info, iter, relres

# -----------------------------------------------------------
print 'remove test'
n = 100
L = spmatrix.ll_mat(n, n)
Exemple #8
0
def test_pcg(ProblemList, tol=1.0e-6):

    if len(ProblemList) == 0:
        usage()
        sys.exit(1)
    
    header1 = '%10s  %6s  %6s  ' % ('Name', 'n', 'nnz')
    header2 = '%6s  %8s  %8s  %4s  %6s  %6s\n' % ('iter','relres','error','info','form M','solve')
    dheader1 = '%10s  %6d  %6d  '
    dheader2 = '%6d  %8.1e  %8.1e  %4d  %6.2f  %6.2f\n' 
    lhead1 = len(header1)
    lhead2 = len(header2)
    lhead = lhead1 + lhead2
    sys.stderr.write('-' * lhead + '\n')
    sys.stderr.write(header1)
    sys.stderr.write(header2)
    sys.stderr.write('-' * lhead + '\n')

    # Record timings for each preconditioner
    timings = { 'None' : [],
                'Diagonal' : [],
                'SSOR' : []
              }

    for problem in ProblemList:
    
        A = spmatrix.ll_mat_from_mtx(problem)
        (m, n) = A.shape
        if m != n: break
    
        prob = os.path.basename(problem)
        if prob[-4:] == '.mtx': prob = prob[:-4]

        # Right-hand side is Ae
        e = np.ones(n, 'd')
        b = np.empty(n, 'd')
        A.matvec(e, b)

        sys.stdout.write(dheader1 % (prob, n, A.nnz))

        # No preconditioner
        x = np.zeros(n, 'd')
        t = cputime()
        info, iter, relres = pcg(A, b, x, tol, 2*n)
        t_noprec = cputime() - t
        err = np.linalg.norm(x-e, ord=np.Inf)
        sys.stdout.write(dheader2 % (iter, relres, err, info, 0.0, t_noprec))
        timings['None'].append(t_noprec)

        # Diagonal preconditioner
        x = np.zeros(n, 'd')
        t = cputime()
        M = precon.jacobi(A, 1.0, 1)
        t_getM_diag = cputime() - t
        t = cputime()
        info, iter, relres = pcg(A, b, x, tol, 2*n, M)
        t_diag = cputime() - t
        err = np.linalg.norm(x-e, ord=np.Inf)
        sys.stdout.write(lhead1 * ' ')
        sys.stdout.write(dheader2 % (iter,relres,err,info,t_getM_diag,t_diag))
        timings['Diagonal'].append(t_diag)

        # SSOR preconditioner
        # It appears that steps=1 and omega=1.0 are nearly optimal in all cases
        x = np.zeros(n, 'd')
        t = cputime()
        M = precon.ssor(A.to_sss(), 1.0, 1)
        t_getM_ssor = cputime() - t
        t = cputime()
        info, iter, relres = pcg(A, b, x, tol, 2*n, M)
        t_ssor = cputime() - t
        err = np.linalg.norm(x-e, ord=np.Inf)
        sys.stdout.write(lhead1 * ' ')
        sys.stdout.write(dheader2 % (iter,relres,err,info,t_getM_ssor,t_ssor))
        timings['SSOR'].append(t_ssor)
        sys.stderr.write('-' * lhead + '\n')

    return timings
Exemple #9
0
S = L.to_sss()

b = np.ones(N * N, 'd')

print 'Solving 2D-Laplace equation using PCG and SSOR preconditioner with variable omega'
print
print 'omega    nit    time       resid'
print '--------------------------------'

for omega in [0.1 * (i + 1) for i in range(20)]:

    K_ssor = precon.ssor(S, omega, SSOR_STEPS)
    t1 = time.clock()

    x = np.empty(N * N, 'd')
    info, iter, relres = pcg(S, b, x, TOL, MAXIT, K_ssor)

    elapsed_time = time.clock() - t1

    r = np.zeros(N * N, 'd')
    S.matvec(x, r)
    r = b - r
    res_nrm2 = np.linalg.norm(r)

    if info == 0:
        iter_str = str(iter)
    else:
        iter_str = '---'
    print '%5.1f  %5s  %6.2f  %10.3e' % (omega, iter_str, elapsed_time,
                                         res_nrm2)