def ex_spectra(): # Delete any existing pytplot variables pytplot.del_data() # Download THEMIS data for 2015-12-31 pyspedas.load_data('themis', ['2015-12-31'], ['tha'], 'sst', 'l2') # Specify options pytplot.tplot_options('title', 'tha_psif_en_eflux 2015-12-31') pytplot.ylim('tha_psif_en_eflux', 10000.0, 10000000.0) pytplot.options('tha_psif_en_eflux', 'colormap', 'viridis') # Plot spectrogram pytplot.tplot(['tha_psif_en_eflux'])
def ex_omni(): # Print the installed version of pyspedas pyspedas.version() # Delete any existing pytplot variables pytplot.del_data() # Download OMNI data for 2015-12-31 pyspedas.load_data('omni', ['2015-12-31 00:00:00', '2016-01-01 23:59:59'], '', '', '1min') # Plot pytplot.tplot_options('title', 'OMNI flow_speed 2015-12-31 to 2016-01-01') pytplot.tplot(['flow_speed'])
def ex_analysis(): # Print the installed version of pyspedas pyspedas.version() # Delete any existing pytplot variables pytplot.del_data() # Download THEMIS state data for 2015-12-31 pyspedas.load_data('themis', '2015-12-31', ['tha'], 'state', 'l1') # Use some analysis functions on tplot variables pyspedas.subtract_average('tha_pos') pyspedas.subtract_median('tha_pos') # Plot pytplot.tplot(["tha_pos", "tha_pos-d", "tha_pos-m"])
def ex_basic(): # Delete any existing pytplot variables pytplot.del_data() # Download THEMIS state data for 2015-12-31 time_range = ['2015-12-31 00:00:00', '2016-01-01 12:00:00'] pyspedas.load_data('themis', time_range, ['tha'], 'state', 'l1') # Get data into python variables alldata = pytplot.get_data("tha_pos") time = alldata[0] data = alldata[1] # Store a new pytplot variable pytplot.store_data("tha_position", data={'x': time, 'y': data}) # Define the y-axis limits pytplot.ylim('tha_pos', -23000.0, 81000.0) pytplot.ylim('tha_position', -23000.0, 81000.0) pytplot.ylim('tha_vel', -8.0, 12.0) # Plot position and velocity using the pyqtgraph library (default) pytplot.tplot(["tha_pos", "tha_position", "tha_vel"])
def ex_gmag(): # Delete any existing pytplot variables pytplot.del_data() # Define list of dates time_list = ['2015-12-31'] # Get a list of EPO gmag stations sites = pyspedas.gmag_list(group='epo') # Download gmag files and load data into pytplot variables pyspedas.load_data('gmag', time_list, sites, '', '') # Get a list of loaded sites sites_loaded = pyspedas.tplot_names() # Subtact mean values pyspedas.subtract_average(sites_loaded, '') # Download AE index data pyspedas.load_data('gmag', time_list, ['idx'], '', '') # Plot sites_loaded = pyspedas.tplot_names() pytplot.tplot_options('title', 'EPO GMAG 2015-12-31') pytplot.tplot(sites_loaded)
# and the version of the installed pyspedas package, using the function version(). version() #################################################################################### # Delete any existing pytplot variables del_data() #################################################################################### # Define a time range. Here, we pick a time range that spans one and a half day. time_range = ['2015-12-31 00:00:00', '2016-01-01 12:00:00'] #################################################################################### # Download THEMIS state data and store it into the pytplot object. # This following function downloads all the necessary files, loads data, # and time-clips data to the specified time range. load_data('themis', time_range, ['tha'], 'state', 'l1') #################################################################################### # Get data from pytplot object into python variables. # This is useful when we want to work on the data using standard python libraries. alldata = get_data("tha_vel") time = alldata[0] data = alldata[1] #################################################################################### # After working with the data, we can store a new pytplot variable. # We can store any data in the pytplot object. store_data("tha_new_vel", data={'x': time, 'y': data}) #################################################################################### # Preparing for the plots, we define the y-axis limits.