Exemple #1
0
    def test_detection_of_missing_arrays_for_integrator(self):
        # Given.
        x = np.asarray([1.0])
        u = np.asarray([0.0])
        h = np.ones_like(x)
        pa = get_particle_array(name='fluid', x=x, u=u, h=h, m=h)
        arrays = [pa]

        # When
        integrator = LeapFrogIntegrator(fluid=LeapFrogStep())
        equations = [SHM(dest="fluid", sources=None)]
        kernel = CubicSpline(dim=1)
        a_eval = AccelerationEval(particle_arrays=arrays,
                                  equations=equations,
                                  kernel=kernel)
        comp = SPHCompiler(a_eval, integrator=integrator)

        # Then
        self.assertRaises(RuntimeError, comp.compile)
Exemple #2
0
    def test_leapfrog(self):
        # Given.
        integrator = LeapFrogIntegrator(fluid=LeapFrogStep())
        equations = [SHM(dest="fluid", sources=None)]
        self._setup_integrator(equations=equations, integrator=integrator)
        tf = np.pi
        dt = 0.02 * tf

        # When
        energy = []

        def callback(t):
            x, u = self.pa.x[0], self.pa.u[0]
            energy.append(0.5 * (x * x + u * u))

        callback(0.0)
        self._integrate(integrator, dt, tf, callback)

        # Then
        energy = np.asarray(energy)
        self.assertAlmostEqual(np.max(np.abs(energy - 0.5)), 0.0, places=3)
Exemple #3
0
    def test_leapfrog_is_second_order(self):
        # Given.
        integrator = LeapFrogIntegrator(fluid=LeapFrogStep())
        equations = [SHM(dest="fluid", sources=None)]
        self._setup_integrator(equations=equations, integrator=integrator)

        # Take a dt, find the error, halve dt, and see that error is drops as
        # desired.

        # When
        tf = np.pi
        dt = 0.02 * tf
        energy = []

        def callback(t):
            x, u = self.pa.x[0], self.pa.u[0]
            energy.append(0.5 * (x * x + u * u))

        callback(0.0)
        self._integrate(integrator, dt, tf, callback)
        energy = np.asarray(energy)
        err1 = np.max(np.abs(energy - 0.5))

        # When
        self.pa.x[0] = 1.0
        self.pa.u[0] = 0.0
        energy = []
        dt *= 0.5
        callback(0.0)
        self._integrate(integrator, dt, tf, callback)
        energy = np.asarray(energy)
        err2 = np.max(np.abs(energy - 0.5))

        # Then
        self.assertTrue(err2 < err1)
        self.assertAlmostEqual(err1 / err2, 4.0, places=2)