Exemple #1
0
    def create_equations(self):
        adami_equations = [
            Group(
                equations=[SummationDensity(dest='fluid', sources=['fluid'])],
                real=False),
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
            ],
                  real=False),
            Group(equations=[
                AdamiColorGradient(dest='fluid', sources=['fluid']),
            ],
                  real=False),
            Group(equations=[
                AdamiReproducingDivergence(dest='fluid',
                                           sources=['fluid'],
                                           dim=2),
            ],
                  real=False),
            Group(equations=[
                MomentumEquationPressureGradient(dest='fluid',
                                                 sources=['fluid'],
                                                 pb=p0),
                MomentumEquationViscosityAdami(dest='fluid',
                                               sources=['fluid']),
                CSFSurfaceTensionForceAdami(
                    dest='fluid',
                    sources=None,
                )
            ], )
        ]

        return adami_equations
Exemple #2
0
    def create_equations(self):
        adami_equations = [
            Group(equations=[
                SummationDensity(dest='fluid', sources=['fluid', 'wall']),
                SummationDensity(dest='wall', sources=['fluid', 'wall']),
            ],),
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0,
                                p0=p0),
                SolidWallPressureBCnoDensity(dest='wall', sources=['fluid']),
            ],),
            Group(equations=[
                AdamiColorGradient(dest='fluid', sources=['fluid', 'wall']),
            ],
            ),
            Group(equations=[
                AdamiReproducingDivergence(dest='fluid', sources=['fluid', 'wall'],
                                            dim=2),
            ],),
            Group(
                equations=[
                    MomentumEquationPressureGradient(
                        dest='fluid', sources=['fluid', 'wall'], pb=p0),
                    MomentumEquationViscosityAdami(
                        dest='fluid', sources=['fluid']),
                    CSFSurfaceTensionForceAdami(
                        dest='fluid', sources=None),
                    SolidWallNoSlipBC(dest='fluid', sources=['wall'], nu=nu0),
                ], )
        ]

        return adami_equations
Exemple #3
0
    def create_equations(self):
        # Formulation for REF1
        # (using only first set of equations for simplicity)
        equations = [


            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
                ], ),
            
            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOSHGCorrectionVariableRho(dest='fluid', sources=None,  c0=c0, gamma=gamma),
                ], ),
            
            # The boundary conditions are imposed by extrapolating the fluid
            # pressure, taking into consideration the boundary acceleration
            Group(equations=[
                SolidWallPressureBC(dest='solid', sources=['fluid'], b=1.0, gy=gravity_y,
                                    rho0=rho0, p0=p0)
            ], ),

            # Main acceleration block
            Group(equations=[

                # Continuity equation
                ContinuityEquation(dest='fluid', sources=['fluid', 'solid']),

                # Pressure gradient with acceleration damping
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gravity_y,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid', 'solid'], alpha=0.24, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)
                ]),
        ]

        return equations
Exemple #4
0
    def _get_force_evaluator(self):
        from pysph.solver.utils import load
        from pysph.base.kernels import QuinticSpline
        from pysph.tools.sph_evaluator import SPHEvaluator
        from pysph.sph.equation import Group
        from pysph.sph.wc.transport_velocity import (
            SetWallVelocity, MomentumEquationPressureGradient,
            SolidWallNoSlipBC, VolumeSummation, MomentumEquationViscosity)
        data = load(self.output_files[0])
        solid = data['arrays']['solid']
        fluid = data['arrays']['fluid']

        prop = [
            'awhat', 'auhat', 'avhat', 'wg', 'vg', 'ug', 'V', 'uf', 'vf', 'wf',
            'wij', 'vmag'
        ]
        for p in prop:
            solid.add_property(p)
            fluid.add_property(p)
        equations = [
            Group(equations=[
                SetWallVelocity(dest='fluid', sources=['solid']),
                VolumeSummation(dest='fluid', sources=['fluid', 'solid']),
                VolumeSummation(dest='solid', sources=['fluid', 'solid']),
            ],
                  real=False),
            Group(
                equations=[
                    # Pressure gradient terms
                    MomentumEquationPressureGradient(
                        dest='solid', sources=['fluid', 'solid'], pb=p0),
                    MomentumEquationViscosity(dest='solid',
                                              sources=['fluid', 'solid'],
                                              nu=self.nu),
                    SolidWallNoSlipBC(dest='solid',
                                      sources=['fluid'],
                                      nu=self.nu),
                ],
                real=True),
        ]
        sph_eval = SPHEvaluator(arrays=[solid, fluid],
                                equations=equations,
                                dim=2,
                                kernel=QuinticSpline(dim=2))

        return sph_eval
Exemple #5
0
 def create_equations(self):
     morris_equations = [
         Group(
             equations=[SummationDensity(dest='fluid', sources=['fluid'])],
             real=False),
         Group(equations=[
             StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
             SmoothedColor(dest='fluid', sources=['fluid']),
         ],
               real=False),
         Group(equations=[
             MorrisColorGradient(dest='fluid',
                                 sources=['fluid'],
                                 epsilon=epsilon),
         ],
               real=False),
         Group(equations=[
             InterfaceCurvatureFromNumberDensity(
                 dest='fluid',
                 sources=['fluid'],
                 with_morris_correction=True),
         ],
               real=False),
         Group(equations=[
             MomentumEquationPressureGradient(dest='fluid',
                                              sources=['fluid'],
                                              pb=p0),
             MomentumEquationViscosity(dest='fluid',
                                       sources=['fluid'],
                                       nu=nu),
             CSFSurfaceTensionForce(dest='fluid', sources=None,
                                    sigma=sigma),
             MomentumEquationArtificialStress(dest='fluid',
                                              sources=['fluid']),
         ], )
     ]
     return morris_equations
Exemple #6
0
    def create_equations(self):
        sy11_equations = [
            Group(
                equations=[SummationDensity(dest='fluid', sources=['fluid'])],
                real=False),
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
                SY11ColorGradient(dest='fluid', sources=['fluid'])
            ],
                  real=False),
            Group(equations=[
                ScaleSmoothingLength(dest='fluid',
                                     sources=None,
                                     factor=factor1)
            ],
                  real=False,
                  update_nnps=True),
            Group(equations=[SY11DiracDelta(dest='fluid', sources=['fluid'])],
                  real=False),
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(
                    dest='fluid',
                    sources=['fluid'],
                    with_morris_correction=True),
            ],
                  real=False),
            Group(
                equations=[
                    ScaleSmoothingLength(dest='fluid',
                                         sources=None,
                                         factor=factor2)
                ],
                real=False,
                update_nnps=True,
            ),
            Group(equations=[
                MomentumEquationPressureGradient(dest='fluid',
                                                 sources=['fluid'],
                                                 pb=0.0),
                MomentumEquationViscosity(dest='fluid',
                                          sources=['fluid'],
                                          nu=nu),
                ShadlooYildizSurfaceTensionForce(dest='fluid',
                                                 sources=None,
                                                 sigma=sigma),
            ], )
        ]

        adami_equations = [
            Group(
                equations=[SummationDensity(dest='fluid', sources=['fluid'])],
                real=False),
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
            ],
                  real=False),
            Group(equations=[
                AdamiColorGradient(dest='fluid', sources=['fluid']),
            ],
                  real=False),
            Group(equations=[
                AdamiReproducingDivergence(dest='fluid',
                                           sources=['fluid'],
                                           dim=2),
            ],
                  real=False),
            Group(equations=[
                MomentumEquationPressureGradient(dest='fluid',
                                                 sources=['fluid'],
                                                 pb=p0),
                MomentumEquationViscosityAdami(dest='fluid',
                                               sources=['fluid']),
                CSFSurfaceTensionForceAdami(
                    dest='fluid',
                    sources=None,
                )
            ], )
        ]

        adami_stress_equations = [
            Group(equations=[
                SummationDensity(dest='fluid', sources=['fluid']),
            ],
                  real=False),
            Group(equations=[
                TaitEOS(dest='fluid',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=7,
                        p0=p0),
            ],
                  real=False),
            Group(equations=[
                ColorGradientAdami(dest='fluid', sources=['fluid']),
            ],
                  real=False),
            Group(equations=[
                ConstructStressMatrix(dest='fluid',
                                      sources=None,
                                      sigma=sigma,
                                      d=2)
            ],
                  real=False),
            Group(equations=[
                MomentumEquationPressureGradientAdami(dest='fluid',
                                                      sources=['fluid']),
                MomentumEquationViscosityAdami(dest='fluid', sources=['fluid'
                                                                      ]),
                SurfaceForceAdami(dest='fluid', sources=['fluid']),
            ]),
        ]

        tvf_equations = [
            Group(
                equations=[SummationDensity(dest='fluid', sources=['fluid'])],
                real=False),
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
                SmoothedColor(dest='fluid', sources=['fluid']),
            ],
                  real=False),
            Group(equations=[
                MorrisColorGradient(dest='fluid',
                                    sources=['fluid'],
                                    epsilon=epsilon),
            ],
                  real=False),
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(
                    dest='fluid',
                    sources=['fluid'],
                    with_morris_correction=True),
            ],
                  real=False),
            Group(equations=[
                MomentumEquationPressureGradient(dest='fluid',
                                                 sources=['fluid'],
                                                 pb=p0),
                MomentumEquationViscosity(dest='fluid',
                                          sources=['fluid'],
                                          nu=nu),
                CSFSurfaceTensionForce(dest='fluid', sources=None,
                                       sigma=sigma),
                MomentumEquationArtificialStress(dest='fluid',
                                                 sources=['fluid']),
            ], )
        ]

        morris_equations = [
            Group(equations=[
                SummationDensitySourceMass(dest='fluid', sources=['fluid']),
            ],
                  real=False,
                  update_nnps=False),
            Group(equations=[
                TaitEOS(dest='fluid',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=1.0),
                SmoothedColor(dest='fluid', sources=[
                    'fluid',
                ]),
                ScaleSmoothingLength(dest='fluid',
                                     sources=None,
                                     factor=2.0 / 3.0),
            ],
                  real=False,
                  update_nnps=False),
            Group(equations=[
                MorrisColorGradient(dest='fluid',
                                    sources=[
                                        'fluid',
                                    ],
                                    epsilon=epsilon),
            ],
                  real=False,
                  update_nnps=False),
            Group(equations=[
                InterfaceCurvatureFromDensity(dest='fluid',
                                              sources=['fluid'],
                                              with_morris_correction=True),
                ScaleSmoothingLength(dest='fluid', sources=None, factor=1.5),
            ],
                  real=False,
                  update_nnps=False),
            Group(equations=[
                MomentumEquationPressureGradientMorris(dest='fluid',
                                                       sources=['fluid']),
                MomentumEquationViscosityMorris(dest='fluid',
                                                sources=['fluid']),
                CSFSurfaceTensionForce(dest='fluid', sources=None,
                                       sigma=sigma),
            ],
                  update_nnps=False)
        ]

        if self.options.scheme == 'tvf':
            return tvf_equations
        elif self.options.scheme == 'adami_stress':
            return adami_stress_equations
        elif self.options.scheme == 'adami':
            return adami_equations
        elif self.options.scheme == 'shadloo':
            return sy11_equations
        else:
            return morris_equations
Exemple #7
0
def get_surface_tension_equations(fluids, solids, scheme, rho0, p0, c0, b,
                                  factor1, factor2, nu, sigma, d, epsilon,
                                  gamma, real=False):
    """
    This function returns the required equations for the multiphase
    formulation taking inputs of the fluid particles array, solid particles
    array, the scheme to be used and other physical parameters
    Parameters
    ------------------

    fluids: list
        List of names of fluid particle arrays
    solids: list
        List of names of solid particle arrays
    scheme: string
        The scheme with which the equations are to be setup.
        Supported Schemes:
            1. TVF scheme with Morris' surface tension.
            String to be used: "tvf"
            2. Adami's surface tension implementation which doesn't involve
            calculation of curvature. String to be used: "adami_stress"
            3. Adami's surface tension implementation which involves
            calculation of curvature. String to be used: "adami"
            4. Shadloo Yildiz surface tension formulation.
            String to be used: "shadloo"
            5. Morris' surface tension formulation. This is the default scheme
            which will be used if none of the above strings are input as
            scheme.
    rho0 : float
        The reference density of the medium (Currently multiple reference
        densities for different particles is not supported)
    p0 : float
        The background pressure of the medium(Currently multiple background
        pressures for different particles is not supported)
    c0 : float
        The speed of sound of the medium(Currently multiple speeds of sounds
        for different particles is not supported)
    b : float
        The b parameter of the generalized Tait Equation of State. Refer to
        the Tait Equation's documentation for reference
    factor1 : float
        The factor for scaling of smoothing length for calculation of
        interface curvature number for shadloo's scheme
    factor2 : float
        The factor for scaling back of smoothing length for calculation of
        forces after calculating the interface curvature number in shadloo's
        scheme
    nu : float
        The kinematic viscosity of the medium
    sigma : float
        The surface tension of the system
    d : int
        The number of dimensions of the problem in the cartesian space
    epsilon: float
        Put this option false if the equations are supposed to be evaluated
        for the ghost particles, else keep it True
    """
    if scheme == 'tvf':
        result = []
        equations = []
        for i in fluids+solids:
            equations.append(SummationDensity(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(StateEquation(dest=i, sources=None, rho0=rho0,
                                           p0=p0))
            equations.append(SmoothedColor(dest=i, sources=fluids+solids))
        for i in solids:
            equations.append(SolidWallPressureBCnoDensity(dest=i,
                                                          sources=fluids))
            equations.append(SmoothedColor(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(MorrisColorGradient(dest=i, sources=fluids+solids,
                                                 epsilon=epsilon))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(InterfaceCurvatureFromNumberDensity(
                dest=i, sources=fluids+solids, with_morris_correction=True))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(MomentumEquationPressureGradient(dest=i,
                             sources=fluids+solids, pb=p0))
            equations.append(MomentumEquationViscosity(dest=i, sources=fluids,
                             nu=nu))
            equations.append(CSFSurfaceTensionForce(dest=i, sources=None,
                             sigma=sigma))
            equations.append(MomentumEquationArtificialStress(dest=i,
                                                              sources=fluids))
            if len(solids) != 0:
                equations.append(SolidWallNoSlipBC(dest=i, sources=solids,
                                 nu=nu))
        result.append(Group(equations))
    elif scheme == 'adami_stress':
        result = []
        equations = []
        for i in fluids+solids:
            equations.append(SummationDensity(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(TaitEOS(dest=i, sources=None, rho0=rho0, c0=c0,
                             gamma=gamma, p0=p0))
        for i in solids:
            equations.append(SolidWallPressureBCnoDensity(dest=i,
                             sources=fluids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(ColorGradientAdami(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(ConstructStressMatrix(dest=i, sources=None,
                                                   sigma=sigma, d=d))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(MomentumEquationPressureGradientAdami(dest=i,
                             sources=fluids+solids))
            equations.append(MomentumEquationViscosityAdami(dest=i,
                                                            sources=fluids))
            equations.append(SurfaceForceAdami(dest=i, sources=fluids+solids))
            if len(solids) != 0:
                equations.append(SolidWallNoSlipBC(dest=i, sources=solids,
                                                   nu=nu))
        result.append(Group(equations))
    elif scheme == 'adami':
        result = []
        equations = []
        for i in fluids+solids:
            equations.append(SummationDensity(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(StateEquation(dest=i, sources=None, rho0=rho0,
                                           p0=p0, b=b))
        for i in solids:
            equations.append(SolidWallPressureBCnoDensity(dest=i,
                                                          sources=fluids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(AdamiColorGradient(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(AdamiReproducingDivergence(dest=i,
                                                        sources=fluids+solids,
                                                        dim=d))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(MomentumEquationPressureGradient(
                dest=i, sources=fluids+solids, pb=0.0))
            equations.append(MomentumEquationViscosityAdami(dest=i,
                                                            sources=fluids))
            equations.append(CSFSurfaceTensionForceAdami(dest=i, sources=None))
            if len(solids) != 0:
                equations.append(SolidWallNoSlipBC(dest=i, sources=solids,
                                 nu=nu))
        result.append(Group(equations))
    elif scheme == 'shadloo':
        result = []
        equations = []
        for i in fluids+solids:
            equations.append(SummationDensity(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(StateEquation(dest=i, sources=None, rho0=rho0,
                                           p0=p0, b=b))
            equations.append(SY11ColorGradient(dest=i, sources=fluids+solids))
        for i in solids:
            equations.append(SolidWallPressureBCnoDensity(dest=i,
                                                          sources=fluids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(ScaleSmoothingLength(dest=i, sources=None,
                                                  factor=factor1))
        result.append(Group(equations, real=real, update_nnps=True))
        equations = []
        for i in fluids:
            equations.append(SY11DiracDelta(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(InterfaceCurvatureFromNumberDensity(
                dest=i, sources=fluids+solids, with_morris_correction=True))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(ScaleSmoothingLength(dest=i, sources=None,
                                                  factor=factor2))
        result.append(Group(equations, real=real, update_nnps=True))
        equations = []
        for i in fluids:
            equations.append(MomentumEquationPressureGradient(
                dest=i, sources=fluids+solids, pb=0.0))
            equations.append(MomentumEquationViscosity(dest=i, sources=fluids,
                                                       nu=nu))
            equations.append(ShadlooYildizSurfaceTensionForce(dest=i,
                                                              sources=None,
                                                              sigma=sigma))
            if len(solids) != 0:
                equations.append(SolidWallNoSlipBC(dest=i, sources=solids,
                                                   nu=nu))
        result.append(Group(equations))
    else:
        result = []
        equations = []
        for i in fluids+solids:
            equations.append(SummationDensitySourceMass(dest=i,
                                                        sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(TaitEOS(dest=i, sources=None, rho0=rho0, c0=c0,
                                     gamma=gamma, p0=0.0))
            equations.append(SmoothedColor(dest=i, sources=fluids+solids))
        for i in solids:
            equations.append(SolidWallPressureBCnoDensity(dest=i,
                                                          sources=fluids))
            equations.append(SmoothedColor(dest=i, sources=fluids+solids))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(MorrisColorGradient(dest=i, sources=fluids+solids,
                                                 epsilon=epsilon))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(InterfaceCurvatureFromDensity(
                dest=i, sources=fluids+solids, with_morris_correction=True))
        result.append(Group(equations, real=real))
        equations = []
        for i in fluids:
            equations.append(MomentumEquationPressureGradientMorris(dest=i,
                             sources=fluids+solids))
            equations.append(MomentumEquationViscosityMorris(dest=i,
                                                             sources=fluids))
            equations.append(CSFSurfaceTensionForce(dest=i, sources=None,
                                                    sigma=sigma))
            if len(solids) != 0:
                equations.append(SolidWallNoSlipBC(dest=i, sources=solids,
                                                   nu=nu))
        result.append(Group(equations))
    return result
Exemple #8
0
 def create_equations(self):
     equations = [
         Group(
             equations=[
                 ComputeDistance(dest='fiber1', sources=['fiber1']),
                 ComputeDistance(dest='fiber2', sources=['fiber2']),
             ],
         ),
         Group(
             equations=[
                 MomentumEquationPressureGradient(
                     dest='fiber1',
                     sources=['fiber1', 'fiber2'], pb=0.0,
                     gx=self.gx, gy=self.gy, gz=self.gz),
                 MomentumEquationPressureGradient(
                     dest='fiber2',
                     sources=['fiber1', 'fiber2'], pb=0.0,
                     gx=self.gx, gy=self.gy, gz=self.gz),
                 Tension(
                     dest='fiber1',
                     sources=None,
                     ea=self.E*self.A),
                 Tension(
                     dest='fiber2',
                     sources=None,
                     ea=self.E*self.A),
                 Bending(
                     dest='fiber1',
                     sources=None,
                     ei=self.E*self.Ip),
                 Bending(
                     dest='fiber2',
                     sources=None,
                     ei=self.E*self.Ip),
                 Contact(
                     dest='fiber1',
                     sources=['fiber1', 'fiber2'],
                     E=self.E, d=self.dx, dim=3,
                     k=self.options.k,
                     eta0=self.options.eta,
                     dt=self.dt),
                 Contact(
                     dest='fiber2',
                     sources=['fiber1', 'fiber2'],
                     E=self.E, d=self.dx, dim=3,
                     k=self.options.k,
                     eta0=self.options.eta,
                     dt=self.dt),
                 Damping(
                     dest='fiber1',
                     sources=None,
                     d=self.D),
                 Damping(
                     dest='fiber2',
                     sources=None,
                     d=self.D)
             ],
         ),
         Group(
             equations=[
                 HoldPoints(dest='fiber1', sources=None, tag=2, x=False),
                 HoldPoints(dest='fiber1', sources=None, tag=1, y=False),
                 HoldPoints(dest='fiber2', sources=None, tag=2, x=False),
                 HoldPoints(dest='fiber2', sources=None, tag=1, y=False),
             ],
         ),
     ]
     return equations
Exemple #9
0
    def _plot_cd_vs_t(self):
        from pysph.solver.utils import iter_output, load
        from pysph.tools.sph_evaluator import SPHEvaluator
        from pysph.sph.equation import Group
        from pysph.sph.wc.transport_velocity import (SetWallVelocity,
            MomentumEquationPressureGradient, SolidWallNoSlipBC,
            SolidWallPressureBC, VolumeSummation)

        data = load(self.output_files[0])
        solid = data['arrays']['solid']
        fluid = data['arrays']['fluid']
        x, y = solid.x.copy(), solid.y.copy()
        cx = 0.5 * L; cy = 0.5 * H
        inside = np.sqrt((x-cx)**2 + (y-cy)**2) <= a
        dest = solid.extract_particles(inside.nonzero()[0])
        # We use the same equations for this as the simulation, except that we
        # do not include the acceleration terms as these are externally
        # imposed.  The goal of these is to find the force of the fluid on the
        # cylinder, thus, gx=0.0 is used in the following.
        equations = [
            Group(
                equations=[
                    VolumeSummation(
                        dest='fluid', sources=['fluid', 'solid']
                    ),
                    VolumeSummation(
                        dest='solid', sources=['fluid', 'solid']
                    ),
                    ], real=False),

            Group(
                equations=[
                    SetWallVelocity(dest='solid', sources=['fluid']),
                    ], real=False),

            Group(
                equations=[
                    SolidWallPressureBC(dest='solid', sources=['fluid'],
                                        gx=0.0, b=1.0, rho0=rho0, p0=p0),
                    ], real=False),

            Group(
                equations=[
                    # Pressure gradient terms
                    MomentumEquationPressureGradient(
                        dest='fluid', sources=['solid'], gx=0.0, pb=pb),
                    SolidWallNoSlipBC(
                        dest='fluid', sources=['solid'], nu=nu),
                    ], real=True),
        ]

        sph_eval = SPHEvaluator(
            arrays=[dest, fluid], equations=equations, dim=2,
            kernel=QuinticSpline(dim=2)
        )

        t, cd = [], []
        for sd, fluid in iter_output(self.output_files, 'fluid'):
            fluid.remove_property('vmag2')
            t.append(sd['t'])
            sph_eval.update_particle_arrays([dest, fluid])
            sph_eval.evaluate()
            Fx = np.sum(-fluid.au*fluid.m)
            cd.append(Fx/(nu*rho0*Umax))

        t, cd = list(map(np.asarray, (t, cd)))

        # Now plot the results.
        import matplotlib
        matplotlib.use('Agg')

        from matplotlib import pyplot as plt
        f = plt.figure()
        plt.plot(t, cd)
        plt.xlabel('$t$'); plt.ylabel(r'$C_D$')
        fig = os.path.join(self.output_dir, "cd_vs_t.png")
        plt.savefig(fig, dpi=300)
        plt.close()

        return t, cd
    def get_equations(self):
        from pysph.sph.equation import Group
        from pysph.sph.wc.transport_velocity import (
            SummationDensity, StateEquation, MomentumEquationPressureGradient,
            MomentumEquationArtificialViscosity, MomentumEquationViscosity,
            MomentumEquationArtificialStress, SolidWallPressureBC,
            SolidWallNoSlipBC, SetWallVelocity)
        equations = []
        all = self.fluids + self.solids
        g1 = []
        for fluid in self.fluids:
            g1.append(SummationDensity(dest=fluid, sources=all))

        equations.append(Group(equations=g1, real=False))

        g2 = []
        for fluid in self.fluids:
            g2.append(
                StateEquation(dest=fluid,
                              sources=None,
                              p0=self.p0,
                              rho0=self.rho0,
                              b=1.0))
        for solid in self.solids:
            g2.append(SetWallVelocity(dest=solid, sources=self.fluids))

        equations.append(Group(equations=g2, real=False))

        g3 = []
        for solid in self.solids:
            g3.append(
                SolidWallPressureBC(dest=solid,
                                    sources=self.fluids,
                                    b=1.0,
                                    rho0=self.rho0,
                                    p0=self.p0,
                                    gx=self.gx,
                                    gy=self.gy,
                                    gz=self.gz))

        equations.append(Group(equations=g3, real=False))

        g4 = []
        for fluid in self.fluids:
            g4.append(
                MomentumEquationPressureGradient(dest=fluid,
                                                 sources=all,
                                                 pb=self.pb,
                                                 gx=self.gx,
                                                 gy=self.gy,
                                                 gz=self.gz,
                                                 tdamp=self.tdamp))
            if self.alpha > 0.0:
                g4.append(
                    MomentumEquationArtificialViscosity(dest=fluid,
                                                        sources=all,
                                                        c0=self.c0,
                                                        alpha=self.alpha))
            if self.nu > 0.0:
                g4.append(
                    MomentumEquationViscosity(dest=fluid,
                                              sources=self.fluids,
                                              nu=self.nu))
                if len(self.solids) > 0:
                    g4.append(
                        SolidWallNoSlipBC(dest=fluid,
                                          sources=self.solids,
                                          nu=self.nu))

            g4.append(
                MomentumEquationArtificialStress(dest=fluid,
                                                 sources=self.fluids))

        equations.append(Group(equations=g4))
        return equations
    def get_equations(self):
        from pysph.sph.equation import Group
        from pysph.sph.wc.basic import TaitEOS
        from pysph.sph.basic_equations import XSPHCorrection
        from pysph.sph.wc.transport_velocity import (
            ContinuityEquation, MomentumEquationPressureGradient,
            MomentumEquationViscosity, MomentumEquationArtificialViscosity,
            SolidWallPressureBC, SolidWallNoSlipBC, SetWallVelocity,
            VolumeSummation)

        equations = []
        all = self.fluids + self.solids

        g2 = []
        for fluid in self.fluids:
            g2.append(VolumeSummation(dest=fluid, sources=all))
            g2.append(
                TaitEOS(dest=fluid,
                        sources=None,
                        rho0=self.rho0,
                        c0=self.c0,
                        gamma=self.gamma,
                        p0=self.p0))
        for solid in self.solids:
            g2.append(VolumeSummation(dest=solid, sources=all))
            g2.append(SetWallVelocity(dest=solid, sources=self.fluids))

        equations.append(Group(equations=g2, real=False))

        g3 = []
        for solid in self.solids:
            g3.append(
                SolidWallPressureBC(dest=solid,
                                    sources=self.fluids,
                                    b=1.0,
                                    rho0=self.rho0,
                                    p0=self.B,
                                    gx=self.gx,
                                    gy=self.gy,
                                    gz=self.gz))

        equations.append(Group(equations=g3, real=False))

        g4 = []
        for fluid in self.fluids:
            g4.append(ContinuityEquation(dest=fluid, sources=all))
            g4.append(
                MomentumEquationPressureGradient(dest=fluid,
                                                 sources=all,
                                                 pb=0.0,
                                                 gx=self.gx,
                                                 gy=self.gy,
                                                 gz=self.gz,
                                                 tdamp=self.tdamp))
            if self.alpha > 0.0:
                g4.append(
                    MomentumEquationArtificialViscosity(dest=fluid,
                                                        sources=all,
                                                        c0=self.c0,
                                                        alpha=self.alpha))
            if self.nu > 0.0:
                g4.append(
                    MomentumEquationViscosity(dest=fluid,
                                              sources=self.fluids,
                                              nu=self.nu))
                if len(self.solids) > 0:
                    g4.append(
                        SolidWallNoSlipBC(dest=fluid,
                                          sources=self.solids,
                                          nu=self.nu))
            g4.append(XSPHCorrection(dest=fluid, sources=[fluid]))

        equations.append(Group(equations=g4))
        return equations
Exemple #12
0
    def create_equations(self):
        # Formulation for REF1
        equations1 = [
            # Spoon Equations
            Group(
                equations=[
                    HarmonicOscilllator(dest='spoon',
                                        sources=None,
                                        A=0.5,
                                        omega=0.2),

                    # Translate acceleration to positions
                    XSPHCorrection(dest='spoon', sources=['spoon'], eps=0.0)
                ],
                real=False),

            # Water Faucet Equations
            Group(equations=[
                H2OFaucet(dest='tahini',
                          sources=None,
                          x=1.25,
                          y=tahiniH,
                          r=0.15,
                          fill_rate=7),
                DiffuseH2O(
                    dest='tahini', sources=['tahini'], diffusion_speed=0.1),
            ]),

            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(
                equations=[VolumeFromMassDensity(dest='tahini',
                                                 sources=None)], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOSHGCorrection(dest='tahini',
                                    sources=None,
                                    rho0=rho0,
                                    c0=c0,
                                    gamma=gamma),
            ], ),

            # The boundary conditions are imposed by extrapolating the tahini
            # pressure, taking into considering the bounday acceleration
            Group(equations=[
                SolidWallPressureBC(dest='bowl',
                                    sources=['tahini'],
                                    b=1.0,
                                    gy=gy,
                                    rho0=rho0,
                                    p0=p0),
                SolidWallPressureBC(dest='spoon',
                                    sources=['tahini'],
                                    b=1.0,
                                    gy=gy,
                                    rho0=rho0,
                                    p0=p0),
            ], ),

            # Main acceleration block
            Group(equations=[
                TahiniEquation(
                    dest='tahini', sources=['tahini'], sigma=dx / 1.122),

                # Continuity equation
                ContinuityEquation(dest='tahini',
                                   sources=['tahini', 'bowl', 'spoon']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    pb=0.0,
                    gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    alpha=1,
                    c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='tahini', sources=['tahini'], eps=0.0)
            ]),
        ]

        # Formulation for REF3
        equations3 = [
            # Spoon Equations
            Group(
                equations=[
                    HarmonicOscilllator(dest='spoon',
                                        sources=None,
                                        A=0.5,
                                        omega=0.2),

                    # Translate acceleration to positions
                    XSPHCorrection(dest='spoon', sources=['spoon'], eps=0.0)
                ],
                real=False),

            # Water Faucet Equations
            Group(equations=[
                H2OFaucet(dest='tahini',
                          sources=None,
                          x=Cx,
                          y=tahiniH,
                          r=0.15,
                          fill_rate=5),
                DiffuseH2O(
                    dest='tahini', sources=['tahini'], diffusion_speed=0.1),
            ]),

            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(
                equations=[VolumeFromMassDensity(dest='tahini',
                                                 sources=None)], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma. The solid phase is treated just as a fluid and
            # the pressure and density operations is updated for this as well.
            Group(equations=[
                TaitEOS(dest='tahini',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=gamma),
                TaitEOS(dest='bowl',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=gamma),
                TaitEOS(dest='spoon',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=gamma),
            ], ),

            # Main acceleration block. The boundary conditions are imposed by
            # peforming the continuity equation and gradient of pressure
            # calculation on the bowl phase, taking contributions from the
            # tahini phase
            Group(equations=[
                TahiniEquation(
                    dest='tahini', sources=['tahini'], sigma=dx / 1.122),

                # Continuity equation
                ContinuityEquation(dest='tahini',
                                   sources=['tahini', 'bowl', 'spoon']),
                ContinuityEquation(dest='bowl', sources=['tahini']),
                ContinuityEquation(dest='spoon', sources=['tahini']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    pb=0.0,
                    gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    alpha=1,
                    c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='tahini', sources=['tahini'], eps=0.5)
            ]),
        ]

        if self.options.bc_type == 1:
            return equations1
        elif self.options.bc_type == 3:
            return equations3
Exemple #13
0
    def create_equations(self):
        tvf_equations = [

            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(equations=[
                SummationDensity(dest='fluid', sources=['fluid', 'wall'])
            ]),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Additionally, we can extrapolate the fluid
            # velocity to the wall for the no-slip boundary
            # condition. Also compute the smoothed color based on the color
            # index for a particle.
            Group(equations=[
                StateEquation(
                    dest='fluid', sources=None, rho0=rho0, p0=p0, b=1.0),
                SetWallVelocity(dest='wall', sources=['fluid']),
                SmoothedColor(dest='fluid', sources=['fluid']),
            ]),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Scale the smoothing lengths to determine the interface
            # quantities. The NNPS need not be updated since the smoothing
            # length is decreased.
            Group(equations=[
                ScaleSmoothingLength(dest='fluid', sources=None, factor=0.8)
            ],
                  update_nnps=False),

            # Compute the gradient of the color function with respect to the
            # new smoothing length. At the end of this Group, we will have the
            # interface normals and the discretized dirac delta function for
            # the fluid-fluid interface.
            Group(equations=[
                ColorGradientUsingNumberDensity(dest='fluid',
                                                sources=['fluid', 'wall'],
                                                epsilon=0.01 / h0),
            ], ),

            # Compute the interface curvature using the modified smoothing
            # length and interface normals computed in the previous Group.
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(
                    dest='fluid',
                    sources=['fluid'],
                    with_morris_correction=True),
            ], ),

            # Now rescale the smoothing length to the original value for the
            # rest of the computations.
            Group(
                equations=[
                    ScaleSmoothingLength(dest='fluid',
                                         sources=None,
                                         factor=1.25)
                ],
                update_nnps=False,
            ),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # Once the pressure for the fluid phase has been updated via the
            # state-equation, we can extrapolate the pressure to the wall
            # ghost particles. After this group, the density and pressure of
            # the boundary particles has been updated and can be used in the
            # integration equations.
            Group(equations=[
                SolidWallPressureBC(dest='wall',
                                    sources=['fluid'],
                                    p0=p0,
                                    rho0=rho0,
                                    gy=gy),
            ], ),

            # The main acceleration block
            Group(
                equations=[

                    # Gradient of pressure for the fluid phase using the
                    # number density formulation. No penetration boundary
                    # condition using Adami et al's generalized wall boundary
                    # condition. The extrapolated pressure and density on the
                    # wall particles is used in the gradient of pressure to
                    # simulate a repulsive force.
                    MomentumEquationPressureGradient(dest='fluid',
                                                     sources=['fluid', 'wall'],
                                                     pb=p0,
                                                     gy=gy),

                    # Artificial viscosity for the fluid phase.
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # No-slip boundary condition using Adami et al's
                    # generalized wall boundary condition. This equation
                    # basically computes the viscous contribution on the fluid
                    # from the wall particles.
                    SolidWallNoSlipBC(dest='fluid', sources=['wall'], nu=nu),

                    # Surface tension force for the SY11 formulation
                    ShadlooYildizSurfaceTensionForce(dest='fluid',
                                                     sources=None,
                                                     sigma=sigma),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ], )
        ]
        return tvf_equations
Exemple #14
0
    def create_equations(self):
        # Formulation for REF1
        equations1 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
            ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOS(
                    dest='fluid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
            ], ),

            # The boundary conditions are imposed by extrapolating the fluid
            # pressure, taking into considering the bounday acceleration
            Group(equations=[
                SolidWallPressureBC(dest='solid', sources=['fluid'], b=1.0, gy=gy,
                                    rho0=rho0, p0=p0),
            ], ),

            # Main acceleration block
            Group(equations=[

                # Continuity equation
                ContinuityEquation(
                    dest='fluid', sources=[
                        'fluid', 'solid']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid', 'solid'], alpha=0.24, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)

            ]),
        ]

        # Formulation for REF2. Note that for this formulation to work, the
        # boundary particles need to have a spacing different from the fluid
        # particles (usually determined by a factor beta). In the current
        # implementation, the value is taken as 1.0 which will mostly be
        # ineffective.
        equations2 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
            ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOS(
                    dest='fluid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
            ], ),

            # Main acceleration block
            Group(equations=[

                # The boundary conditions are imposed as a force or
                # accelerations on the fluid particles. Note that the
                # no-penetration condition is to be satisfied with this
                # equation. The subsequent equations therefore do not have
                # solid as the source. Note the difference between the
                # ghost-fluid formulations. K should be 0.01*co**2
                # according to REF2. We take it much smaller here on
                # account of the multiple layers of boundary particles
                MonaghanKajtarBoundaryForce(dest='fluid', sources=['solid'],
                                            K=0.02, beta=1.0, h=hdx * dx),

                # Continuity equation
                ContinuityEquation(dest='fluid', sources=['fluid', ]),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid'], pb=0.0, gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid'], alpha=0.25, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)

            ]),
        ]

        # Formulation for REF3
        equations3 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
            ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma. The solid phase is treated just as a fluid and
            # the pressure and density operations is updated for this as well.
            Group(equations=[
                TaitEOS(
                    dest='fluid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
                TaitEOS(
                    dest='solid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
            ], ),

            # Main acceleration block. The boundary conditions are imposed by
            # peforming the continuity equation and gradient of pressure
            # calculation on the solid phase, taking contributions from the
            # fluid phase
            Group(equations=[

                # Continuity equation
                ContinuityEquation(
                    dest='fluid', sources=[
                        'fluid', 'solid']),
                ContinuityEquation(dest='solid', sources=['fluid']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid', 'solid'], alpha=0.25, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.5)

            ]),
        ]

        if self.options.bc_type == 1:
            return equations1
        elif self.options.bc_type == 2:
            return equations2
        elif self.options.bc_type == 3:
            return equations3
Exemple #15
0
    def create_equations(self):
        equations = [

            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(equations=[
                SummationDensity(dest='fluid', sources=['fluid']),
            ]),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Also compute the smoothed color based on the
            # color index for a particle.
            Group(equations=[
                StateEquation(
                    dest='fluid', sources=None, rho0=rho0, p0=p0, b=1.0),
                SmoothedColor(dest='fluid', sources=['fluid']),
            ]),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Scale the smoothing lengths to determine the interface
            # quantities.
            Group(equations=[
                ScaleSmoothingLength(dest='fluid',
                                     sources=None,
                                     factor=factor1)
            ],
                  update_nnps=False),

            # Compute the gradient of the color function with respect to the
            # new smoothing length. At the end of this Group, we will have the
            # interface normals and the discretized dirac delta function for
            # the fluid-fluid interface.
            Group(
                equations=[
                    MorrisColorGradient(dest='fluid',
                                        sources=['fluid'],
                                        epsilon=0.01 / h0),
                    # ColorGradientUsingNumberDensity(dest='fluid',sources=['fluid'],
                    #                                epsilon=epsilon),
                    # AdamiColorGradient(dest='fluid', sources=['fluid']),
                ], ),

            # Compute the interface curvature using the modified smoothing
            # length and interface normals computed in the previous Group.
            Group(
                equations=[
                    InterfaceCurvatureFromNumberDensity(
                        dest='fluid',
                        sources=['fluid'],
                        with_morris_correction=True),
                    # AdamiReproducingDivergence(dest='fluid',sources=['fluid'],
                    #                           dim=2),
                ], ),

            # Now rescale the smoothing length to the original value for the
            # rest of the computations.
            Group(
                equations=[
                    ScaleSmoothingLength(dest='fluid',
                                         sources=None,
                                         factor=factor2)
                ],
                update_nnps=False,
            ),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # The main acceleration block
            Group(
                equations=[

                    # Gradient of pressure for the fluid phase using the
                    # number density formulation.
                    MomentumEquationPressureGradient(dest='fluid',
                                                     sources=['fluid'],
                                                     pb=p0),

                    # Artificial viscosity for the fluid phase.
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # Surface tension force for the SY11 formulation
                    ShadlooYildizSurfaceTensionForce(dest='fluid',
                                                     sources=None,
                                                     sigma=sigma),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ], )
        ]
        return equations
Exemple #16
0
    def create_equations(self):
        equations = [

            # set the acceleration for the obstacle using the special function
            # mimicking the accelerations provided in the test.
            Group(equations=[
                SPHERICBenchmarkAcceleration(dest='obstacle', sources=None),
            ],
                  real=False),

            # Summation density along with volume summation for the fluid
            # phase. This is done for all local and remote particles. At the
            # end of this group, the fluid phase has the correct density
            # taking into consideration the fluid and solid
            # particles.
            Group(equations=[
                SummationDensity(dest='fluid',
                                 sources=['fluid', 'solid', 'obstacle']),
            ],
                  real=False),

            # Once the fluid density is computed, we can use the EOS to set
            # the fluid pressure. Additionally, the dummy velocity for the
            # channel is set, which is later used in the no-slip wall BC.
            Group(equations=[
                StateEquation(dest='fluid',
                              sources=None,
                              p0=p0,
                              rho0=rho0,
                              b=1.0),
                SetWallVelocity(dest='solid', sources=['fluid']),
                SetWallVelocity(dest='obstacle', sources=['fluid']),
            ],
                  real=False),

            # Once the pressure for the fluid phase has been updated, we can
            # extrapolate the pressure to the ghost particles. After this
            # group, the fluid density, pressure and the boundary pressure has
            # been updated and can be used in the integration equations.
            Group(equations=[
                SolidWallPressureBC(dest='obstacle',
                                    sources=['fluid'],
                                    b=1.0,
                                    rho0=rho0,
                                    p0=p0),
                SolidWallPressureBC(dest='solid',
                                    sources=['fluid'],
                                    b=1.0,
                                    rho0=rho0,
                                    p0=p0),
            ],
                  real=False),

            # The main accelerations block. The acceleration arrays for the
            # fluid phase are upadted in this stage for all local particles.
            Group(
                equations=[
                    # Pressure gradient terms
                    MomentumEquationPressureGradient(
                        dest='fluid',
                        sources=['fluid', 'solid', 'obstacle'],
                        pb=p0),

                    # fluid viscosity
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # No-slip boundary condition. This is effectively a
                    # viscous interaction of the fluid with the ghost
                    # particles.
                    SolidWallNoSlipBC(dest='fluid',
                                      sources=['solid', 'obstacle'],
                                      nu=nu),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ],
                real=True),
        ]
        return equations
Exemple #17
0
    def _plot_force_vs_t(self):
        from pysph.solver.utils import iter_output, load
        from pysph.tools.sph_evaluator import SPHEvaluator
        from pysph.sph.equation import Group
        from pysph.base.kernels import QuinticSpline
        from pysph.sph.wc.transport_velocity import (
            MomentumEquationPressureGradient, SummationDensity,
            SetWallVelocity)

        data = load(self.output_files[0])
        solid = data['arrays']['solid']
        fluid = data['arrays']['fluid']

        prop = [
            'awhat', 'auhat', 'avhat', 'wg', 'vg', 'ug', 'V', 'uf', 'vf', 'wf',
            'wij', 'vmag', 'pavg', 'nnbr', 'auf', 'avf', 'awf'
        ]
        for p in prop:
            solid.add_property(p)
            fluid.add_property(p)

        # We find the force of the solid on the fluid and the opposite of that
        # is the force on the solid. Note that the assumption is that the solid
        # is far from the inlet and outlet so those are ignored.
        print(self.nu, p0, self.dc, rho)
        equations = [
            Group(equations=[
                SummationDensity(dest='fluid', sources=['fluid', 'solid']),
                SummationDensity(dest='solid', sources=['fluid', 'solid']),
                SetWallVelocity(dest='solid', sources=['fluid']),
            ],
                  real=False),
            Group(
                equations=[
                    # Pressure gradient terms
                    MomentumEquationPressureGradient(dest='solid',
                                                     sources=['fluid'],
                                                     pb=p0),
                    SolidWallNoSlipBCReverse(dest='solid',
                                             sources=['fluid'],
                                             nu=self.nu),
                ],
                real=True),
        ]
        sph_eval = SPHEvaluator(arrays=[solid, fluid],
                                equations=equations,
                                dim=2,
                                kernel=QuinticSpline(dim=2))
        t, cd, cl = [], [], []
        import gc
        print(self.dc, self.dx, self.nu)
        print('fxf', 'fxp', 'fyf', 'fyp', 'cd', 'cl', 't')
        for sd, arrays in iter_output(self.output_files[:]):
            fluid = arrays['fluid']
            solid = arrays['solid']
            for p in prop:
                solid.add_property(p)
                fluid.add_property(p)
            t.append(sd['t'])
            sph_eval.update_particle_arrays([solid, fluid])
            sph_eval.evaluate()
            fxp = sum(solid.m * solid.au)
            fyp = sum(solid.m * solid.av)
            fxf = sum(solid.m * solid.auf)
            fyf = sum(solid.m * solid.avf)
            fx = fxf + fxp
            fy = fyf + fyp
            cd.append(fx / (0.5 * rho * umax**2 * self.dc))
            cl.append(fy / (0.5 * rho * umax**2 * self.dc))
            print(fxf, fxp, fyf, fyp, cd[-1], cl[-1], t[-1])
            gc.collect()
        t, cd, cl = list(map(np.asarray, (t, cd, cl)))
        # Now plot the results.
        import matplotlib
        matplotlib.use('Agg')
        from matplotlib import pyplot as plt
        plt.figure()
        plt.plot(t, cd, label=r'$C_d$')
        plt.plot(t, cl, label=r'$C_l$')
        plt.xlabel(r'$t$')
        plt.ylabel('cd/cl')
        plt.legend()
        plt.grid()
        fig = os.path.join(self.output_dir, "force_vs_t.png")
        plt.savefig(fig, dpi=300)
        plt.close()
        return t, cd, cl
Exemple #18
0
    def create_equations(self):
        sy11_equations = [
            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(
                equations=[SummationDensity(dest='fluid', sources=['fluid'])]),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Additionally, we can compute the Shepard
            # Filtered velocity required for the no-penetration boundary
            # condition. Also compute the gradient of the color function to
            # compute the normal at the interface.
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
                SY11ColorGradient(dest='fluid', sources=['fluid'])
            ]),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Scale the smoothing lengths to determine the interface
            # quantities.
            Group(equations=[
                ScaleSmoothingLength(dest='fluid',
                                     sources=None,
                                     factor=factor1)
            ],
                  update_nnps=False),

            # Compute the discretized dirac delta with respect to the new
            # smoothing length.
            Group(equations=[SY11DiracDelta(dest='fluid',
                                            sources=['fluid'])], ),

            # Compute the interface curvature using the modified smoothing
            # length and interface normals computed in the previous Group.
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(
                    dest='fluid',
                    sources=['fluid'],
                    with_morris_correction=True),
            ], ),

            # Now rescale the smoothing length to the original value for the
            # rest of the computations.
            Group(
                equations=[
                    ScaleSmoothingLength(dest='fluid',
                                         sources=None,
                                         factor=factor2)
                ],
                update_nnps=False,
            ),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # The main acceleration block
            Group(
                equations=[

                    # Gradient of pressure for the fluid phase using the
                    # number density formulation. No penetration boundary
                    # condition using Adami et al's generalized wall boundary
                    # condition. The extrapolated pressure and density on the
                    # wall particles is used in the gradient of pressure to
                    # simulate a repulsive force.
                    MomentumEquationPressureGradient(dest='fluid',
                                                     sources=['fluid'],
                                                     pb=p0),

                    # Artificial viscosity for the fluid phase.
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # Surface tension force for the SY11 formulation
                    ShadlooYildizSurfaceTensionForce(dest='fluid',
                                                     sources=None,
                                                     sigma=sigma),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ], )
        ]

        morris_equations = [

            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(
                equations=[SummationDensity(dest='fluid', sources=['fluid'])]),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Additionally, we can compute the Shepard
            # Filtered velocity required for the no-penetration boundary
            # condition. Also compute the smoothed color based on the color
            # index for a particle.
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
                SmoothedColor(dest='fluid', sources=['fluid'], smooth=True),
            ]),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Compute the gradient of the smoothed color field. At the end of
            # this Group, we will have the interface normals and the
            # discretized dirac delta function for the fluid-fluid interface.
            Group(equations=[
                MorrisColorGradient(dest='fluid',
                                    sources=['fluid'],
                                    epsilon=epsilon),
            ], ),

            # Compute the interface curvature computed in the previous Group.
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(
                    dest='fluid',
                    sources=['fluid'],
                    with_morris_correction=True),
            ], ),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # The main acceleration block
            Group(
                equations=[

                    # Gradient of pressure for the fluid phase
                    MomentumEquationPressureGradient(dest='fluid',
                                                     sources=['fluid'],
                                                     pb=p0),

                    # Artificial viscosity for the fluid phase.
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # Surface tension force for the Morris formulation
                    CSFSurfaceTensionForce(dest='fluid',
                                           sources=None,
                                           sigma=sigma),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ], )
        ]

        adami_equations = [

            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(
                equations=[SummationDensity(dest='fluid', sources=['fluid'])]),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Additionally, we can compute the Shepard
            # Filtered velocity required for the no-penetration boundary
            # condition.
            Group(equations=[
                StateEquation(dest='fluid', sources=None, rho0=rho0, p0=p0),
            ]),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Compute the gradient of the color field.
            Group(equations=[
                AdamiColorGradient(dest='fluid', sources=['fluid']),
            ], ),

            # Compute the interface curvature using the color gradients
            # computed in the previous Group.
            Group(equations=[
                AdamiReproducingDivergence(dest='fluid',
                                           sources=['fluid'],
                                           dim=2),
            ], ),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # The main acceleration block
            Group(
                equations=[

                    # Gradient of pressure for the fluid phase
                    MomentumEquationPressureGradient(dest='fluid',
                                                     sources=['fluid'],
                                                     pb=p0),

                    # Artificial viscosity for the fluid phase.
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # Surface tension force for the CSF formulation
                    CSFSurfaceTensionForce(dest='fluid',
                                           sources=None,
                                           sigma=sigma),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ], )
        ]

        if self.options.scheme == 'morris':
            return morris_equations
        elif self.options.scheme == 'adami':
            return adami_equations
        else:
            return sy11_equations