##Perfomance evaluation predictions = model.predict(data, "test") predictions labels = data.get_labels("test") labels utils.plot_roc(labels, predictions, output_folder + "roc.png") utils.plot_prec_recall(labels, predictions, output_folder + "prec.png") print(utils.get_performance_report(labels, predictions)) Image(output_folder + "roc.png") Image(output_folder + "prec.png") activations = model.get_max_activations(data, "test") logos = model.visualize_all_kernels(activations, data, output_folder) Image(output_folder + "motif_kernel_13.png") Image(output_folder + "activations_kernel_13.png") Image(output_folder + "position_kernel_13.png") Image(output_folder + "data/alu.png") utils.save_as_meme([logo[0] for logo in logos], output_folder + "motifs_seq.meme") utils.save_as_meme([logo[1] for logo in logos], output_folder + "motifs_struct.meme") model.plot_clustering(activations, output_folder + "clustering.png") Image(output_folder + "clustering.png") utils.save_data(data, output_folder + "data.pkl") utils.save_model(model, output_folder + "model.pkl")
def test_utils_save_load_data(self): utils.save_data(self.data, gettempdir() + "/data") self.assertTrue(isfile(gettempdir() + "/data")) data = utils.load_data(gettempdir() + "/data") self.assertTrue(isinstance(data, Data)) remove(gettempdir() + "/data")