Exemple #1
0
    def setUpClass(cls):
        schools_code = """\
            data {
                int<lower=0> J; // number of schools
                real y[J]; // estimated treatment effects
                real<lower=0> sigma[J]; // s.e. of effect estimates
            }
            parameters {
                real mu;
                real<lower=0> tau;
                real eta[J];
            }
            transformed parameters {
                real theta[J];
                for (j in 1:J)
                    theta[j] = mu + tau * eta[j];
            }
            model {
                eta ~ normal(0, 1);
                y ~ normal(theta, sigma);
            }"""

        cls.schools_dat = {'J': 8,
                           'y': [28,  8, -3,  7, -1,  1, 18, 12],
                           'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

        cls.model = get_model("schools_model", schools_code)
 def test_specify_args(self):
     y = (0.70,  -0.16,  0.77, -1.37, -1.99,  1.35, 0.08,
             0.02,  -1.48, -0.08,  0.34,  0.03, -0.42, 0.87,
             -1.36,  1.43,  0.80, -0.48, -1.61, -1.27)
     code = """
         data {
             int N;
             real y[N];
         }
         parameters {
             real mu;
             real<lower=0> sigma;
         }
         model {
             y ~ normal(mu, sigma);
         }"""
     stepsize0 = 0.15
     sm = get_model("normal_mu_sigma_model", code)
     sf = sm.sampling(data=dict(y=y, N=20), iter=200,
                      control=dict(adapt_engaged=False, stepsize=stepsize0))
     self.assertEqual(sf.get_sampler_params()[0]['stepsize__'][0], stepsize0)
     sf2 = stan(fit=sf, iter=20, algorithm='HMC', data=dict(y=y, N=20),
                 control=dict(adapt_engaged=False, stepsize=stepsize0))
     self.assertEqual(sf2.get_sampler_params()[0]['stepsize__'][0], stepsize0)
     sf3 = stan(fit=sf, iter=1, data=dict(y=y, N=20), init=0, chains=1)
     i_u = sf3.unconstrain_pars(sf3.get_inits()[0])
     np.testing.assert_equal(i_u, [0, 0])
Exemple #3
0
 def setUpClass(cls):
     model_code = 'parameters {real y;} model {y ~ normal(0,1);}'
     cls.model = get_model("standard_normal_model",
                           model_code, model_name="normal1",
                           verbose=True, obfuscate_model_name=False)
     #model = pystan.StanModel(model_code=model_code)
     cls.fits = [cls.model.sampling(iter=4000, chains=2, seed=i) for i in range(10)]
    def test_stan_args_basic(self):
        y = np.array([0.70,  -0.16,  0.77, -1.37, -1.99,  1.35, 0.08,
                      0.02,  -1.48, -0.08,  0.34,  0.03, -0.42, 0.87,
                      -1.36,  1.43,  0.80, -0.48, -1.61, -1.27])

        code = '''
        data {
            int N;
            real y[N];
        }
        parameters {
            real mu;
            real<lower=0> sigma;
        }
        model {
            y ~ normal(mu, sigma);
        }'''
        sm = get_model("normal_mu_sigma_model", code)
        sf = sm.sampling(iter=10, thin=3, data=dict(y=y, N=20))
        args = sf.stan_args[0]
        self.assertEqual(args['iter'], 10)
        self.assertEqual(args['thin'], 3)
        self.assertEqual(args['init'], b'random')

        sampling = args['ctrl']['sampling']
        self.assertEqual(sampling['adapt_engaged'], True)
        self.assertEqual(sampling['adapt_window'], 25)
        self.assertEqual(sampling['adapt_init_buffer'], 75)
        self.assertEqual(sampling['adapt_gamma'], 0.05)
        self.assertEqual(sampling['adapt_delta'], 0.8)
        self.assertEqual(sampling['adapt_kappa'], 0.75)
        self.assertEqual(sampling['adapt_t0'], 10)
Exemple #5
0
 def setUpClass(cls):
     model_code = """
     data {
     int<lower=2> K;
     int<lower=1> D;
     }
     parameters {
     matrix[K,D] beta;
     }
     model {
     for (k in 1:K)
         for (d in 1:D)
         beta[k,d] ~ normal((d==2?100:0),1);
     }"""
     cls.model = get_model("matrix_normal_model", model_code)
Exemple #6
0
 def setUpClass(cls):
     model_code = """
     data {
     int<lower=2> K;
     int<lower=1> D;
     }
     parameters {
     matrix[K,D] beta;
     }
     model {
     for (k in 1:K)
         for (d in 1:D)
         beta[k,d] ~ normal(if_else(d==2,100, 0),1);
     }"""
     cls.model = get_model("matrix_normal_model", model_code)
    def test_grad_log(self):
        y = np.array([0.70,  -0.16,  0.77, -1.37, -1.99,  1.35, 0.08,
                      0.02,  -1.48, -0.08,  0.34,  0.03, -0.42, 0.87,
                      -1.36,  1.43,  0.80, -0.48, -1.61, -1.27])

        code = '''
        data {
            int N;
            real y[N];
        }
        parameters {
            real mu;
            real<lower=0> sigma;
        }
        model {
            y ~ normal(mu, sigma);
        }'''

        def log_prob_fun(mu, log_sigma, adjust=True):
            sigma = np.exp(log_sigma)
            lp = -1 * np.sum((y - mu)**2) / (2 * (sigma**2)) - len(y) * np.log(sigma)
            if adjust:
                lp = lp + np.log(sigma)
            return lp

        def log_prob_grad_fun(mu, log_sigma, adjust=True):
            sigma = np.exp(log_sigma)
            g_lsigma = np.sum((y - mu)**2) * sigma**(-2) - len(y)
            if adjust:
                g_lsigma = g_lsigma + 1
            g_mu = np.sum(y - mu) * sigma**(-2)
            return (g_mu, g_lsigma)

        sm = get_model("normal_mu_sigma_model", code)
        sf = sm.sampling(data=dict(y=y, N=20), iter=200)
        mu = 0.1
        sigma = 2
        self.assertEqual(sf.log_prob(sf.unconstrain_pars(dict(mu=mu, sigma=sigma))),
                         log_prob_fun(mu, np.log(sigma)))
        self.assertEqual(sf.log_prob(sf.unconstrain_pars(dict(mu=mu, sigma=sigma)), False),
                         log_prob_fun(mu, np.log(sigma), adjust=False))
        g1 = sf.grad_log_prob(sf.unconstrain_pars(dict(mu=mu, sigma=sigma)), False)
        np.testing.assert_allclose(g1, log_prob_grad_fun(mu, np.log(sigma), adjust=False))
Exemple #8
0
    def setUpClass(cls):
        model_code = 'parameters {real y;} model {y ~ normal(0,1);}'
        model = get_model("standard_normal_model",
                          model_code,
                          model_name="normal1",
                          verbose=True,
                          obfuscate_model_name=False)
        fit = model.sampling()
        tempfolder = tempfile.mkdtemp()
        cls.pickle_fit = os.path.join(tempfolder, 'stanfit.pkl')
        cls.pickle_extract = os.path.join(tempfolder, 'stanextract.pkl')
        with io.open(cls.pickle_fit, mode="wb") as f:
            pickle.dump(fit, f)

        with io.open(cls.pickle_extract, mode="wb") as f:
            pickle.dump(fit.extract(), f)

        module_name = model.module.__name__
        del model
        del sys.modules[module_name]
Exemple #9
0
    def setUpClass(cls):
        bernoulli_model_code = """
            data {
            int<lower=0> N;
            int<lower=0,upper=1> y[N];
            }
            parameters {
            real<lower=0,upper=1> theta;
            }
            model {
            for (n in 1:N)
                y[n] ~ bernoulli(theta);
            }
            """
        cls.bernoulli_data = bernoulli_data = {'N': 10, 'y': [0, 1, 0, 0, 0, 0, 0, 0, 0, 1]}

        cls.model = model = get_model("bernoulli_model",
                                      bernoulli_model_code, model_name="bernoulli")
        #cls.model = model = pystan.StanModel(model_code=bernoulli_model_code, model_name="bernoulli")

        cls.fit = model.sampling(data=bernoulli_data)
    def setUpClass(cls):
        stdnorm = """
        data {
        int N;
        real y[N];
        }

        parameters {
        real mu;
        real<lower=0> sigma;
        }

        model {
        y ~ normal(mu, sigma);
        }
        """

        N = 30
        np.random.seed(1)
        y = np.random.normal(size=N)
        cls.dat = {'N': N, 'y': y}
        cls.sm = get_model("normal_mu_sigma_model", stdnorm, verbose=True)
    def setUpClass(cls):
        model_code = """
        data {
        int<lower=2> K;
        int<lower=1> D;
        }
        parameters {
        matrix[K,D] beta;
        }
        model {
        for (k in 1:K)
            for (d in 1:D)
            beta[k,d] ~ normal((d==2?100:0),1);
        }"""
        cls.model = get_model("matrix_normal_model", model_code)
        #cls.model = StanModel(model_code=model_code)

        control = {"metric": "diag_e"}
        fit = cls.model.sampling(chains=1,
                                 data=dict(K=3, D=4),
                                 warmup=1500,
                                 iter=1501,
                                 control=control,
                                 check_hmc_diagnostics=False,
                                 seed=14)
        cls.pos_def_matrix_diag_e = fit.get_inv_metric()[0]
        cls.stepsize_diag_e = fit.get_stepsize()[0]

        control = {"metric": "dense_e"}
        fit = cls.model.sampling(chains=1,
                                 data=dict(K=3, D=4),
                                 warmup=1500,
                                 iter=1501,
                                 control=control,
                                 check_hmc_diagnostics=False,
                                 seed=14)
        cls.pos_def_matrix_dense_e = fit.get_inv_metric()[0]
        cls.stepsize_dense_e = fit.get_stepsize()[0]
Exemple #12
0
 def test_specify_args(self):
     y = (0.70, -0.16, 0.77, -1.37, -1.99, 1.35, 0.08, 0.02, -1.48, -0.08,
          0.34, 0.03, -0.42, 0.87, -1.36, 1.43, 0.80, -0.48, -1.61, -1.27)
     code = """
         data {
             int N;
             real y[N];
         }
         parameters {
             real mu;
             real<lower=0> sigma;
         }
         model {
             y ~ normal(mu, sigma);
         }"""
     stepsize0 = 0.15
     sm = get_model("normal_mu_sigma_model", code)
     sf = sm.sampling(data=dict(y=y, N=20),
                      iter=200,
                      control=dict(adapt_engaged=False, stepsize=stepsize0))
     self.assertEqual(sf.get_sampler_params()[0]['stepsize__'][0],
                      stepsize0)
     sf2 = stan(fit=sf,
                iter=20,
                algorithm='HMC',
                data=dict(y=y, N=20),
                control=dict(adapt_engaged=False, stepsize=stepsize0))
     self.assertEqual(sf2.get_sampler_params()[0]['stepsize__'][0],
                      stepsize0)
     sf3 = stan(fit=sf,
                iter=1,
                data=dict(y=y, N=20),
                init=0,
                chains=1,
                control={"adapt_engaged": False})
     i_u = sf3.unconstrain_pars(sf3.get_inits()[0])
     np.testing.assert_equal(i_u, [0, 0])
Exemple #13
0
 def setUpClass(cls):
     model_code = 'parameters {real y;} model {y ~ normal(0,1);}'
     cls.model = get_model("standard_normal_model",
                           model_code, model_name="normal1",
                           verbose=True, obfuscate_model_name=False)
Exemple #14
0
 def setUpClass(cls):
     model_code = 'parameters {real x;real y;real z;} model {x ~ normal(0,1);y ~ normal(0,1);z ~ normal(0,1);}'
     cls.model = get_model("standard_normals_model", model_code)
Exemple #15
0
 def setUpClass(cls):
     model_code = 'parameters {real x;real y;real z;} model {x ~ normal(0,1);y ~ normal(0,1);z ~ normal(0,1);}'
     cls.model = get_model("standard_normals_model", model_code)