Exemple #1
0
        def least_sq(p, fjac):
            T = p[0]
            w = p[1]
            if is_Fj:
                wbb = w * rf.planck(self.Freq, T, inp="Hz", out="freq")
            else:
                wbb = np.pi * w * rf.planck(self.Freq, T, inp="Hz", out="freq")

            # model interpolation
            res = np.abs(self.Flux - wbb)
            return 0, res
    def test_fit_bb(self):
        def func(nu, T):
            return np.pi * rf.planck(nu, T, inp="Hz", out="freq")

        self.sp.cut_flux(max(self.sp.Flux) * 1e-5)

        freq = self.sp.Freq
        flux = self.sp.Flux
        Tinit = 1.e4

        popt, pcov = curve_fit(func, freq, flux, p0=Tinit)
        Tbest = popt
        # bestT, pcov = curve_fit(rf.fit_planck(nu, inp='Hz'), nu, flux, p0=Tinit, sigma=sigma)
        sigmaT = np.sqrt(np.diag(pcov))

        print 'True model values'
        print '  Tbb = %.2f K' % self.sp.T

        print 'Parameters of best-fitting model:'
        print '  T = %.2f +/- %.2f K' % (Tbest, sigmaT)

        # Tcol = self.sp.temp_color
        ybest = np.pi * rf.planck(freq, Tbest, inp="Hz", out="freq")
        # plot the solution
        plt.plot(freq, flux, 'b*', label='Spectral T: %f' % self.sp.T)
        plt.plot(freq, ybest, 'r-', label='Best Tcol: %f' % Tbest)
        plt.xscale('log')
        plt.yscale('log')
        plt.legend(loc=3)
        plt.show()

        self.assertAlmostEqual(Tbest, self.sp.T,
                               msg="For planck  Tcolor [%f] should be equal sp.T [%f]." % (Tbest, self.sp.T),
                               delta=Tbest*0.01)
Exemple #3
0
    def test_flux_wl_with_ReddeningLaw(self):
        import matplotlib.pyplot as plt
        from pystella.rf.reddening import ReddeningLaw
        import pystella.rf.rad_func as rf
        from pystella.util.phys_var import phys

        wl = np.logspace(3.0, np.log10(5e4), num=100)
        freq = phys.c / (wl * phys.angs_to_cm)
        T = 15500.
        flux = rf.planck(freq, temperature=T)
        flux_wl = rf.Fnu2Fwl(freq, flux)
        # flux_wl = flux * freq**2 / phys.c

        ebv = 0.074
        plt.plot(wl, flux_wl, color='black', label='Origin planck T={}'.format(T))
        for mode in ReddeningLaw.Modes:
            x = wl
            y = flux_reddening_wl(wl, flux_wl, ebv, mode=mode)
            plt.plot(x, y, label=ReddeningLaw.Names[mode])
        plt.legend()
        plt.xscale("log", nonposx='clip')
        plt.yscale("log", nonposy='clip')
        plt.xlabel(r'$\lambda\; [A]$')
        plt.ylabel(r'$F_\lambda\; [ergs s^{-1} cm^{-2} A^{-1}]$')
        plt.grid(linestyle=':', linewidth=1)
        plt.show()
 def plot(self):
     # plot the input model and synthetic data
     nu = self.sp._freq
     flux = self.sp.flux_q
     Tcol = self.sp.T_color
     ybest = rf.planck(nu, Tcol)
     # plot the solution
     plt.plot(nu, flux, 'b*', nu, ybest, 'r-', label='Tinit=%f, Tcol=%f'%(self.sp.Tbb, Tcol))
     plt.xscale('log')
     plt.yscale('log')
     plt.show()
Exemple #5
0
 def plot(self):
     # plot the input model and synthetic data
     nu = self.sp.Freq
     flux = self.sp.Flux
     Tcol = self.sp.T_color
     ybest = rf.planck(nu, Tcol)
     # plot the solution
     plt.plot(nu,
              flux,
              'b*',
              nu,
              ybest,
              'r-',
              label='Tinit=%f, Tcol=%f' % (self.sp.T, Tcol))
     plt.xscale('log')
     plt.yscale('log')
     plt.show()
Exemple #6
0
    def test_fit_bb(self):
        def func(nu, T):
            return np.pi * rf.planck(nu, T, inp="Hz", out="freq")

        self.sp.cut_flux(max(self.sp.Flux) * 1e-5)

        freq = self.sp.Freq
        flux = self.sp.Flux
        Tinit = 1.e4

        popt, pcov = curve_fit(func, freq, flux, p0=Tinit)
        Tbest = float(popt)
        # bestT, pcov = curve_fit(rf.fit_planck(nu, inp='Hz'), nu, flux, p0=Tinit, sigma=sigma)
        sigmaT = np.sqrt(np.diag(pcov))

        print('True model values')
        print('  Tbb = %.2f K' % self.sp.T)

        print('Parameters of best-fitting model:')
        print("  T = {} +/- {} K".format(Tbest, sigmaT))

        # Tcol = self.sp.temp_color
        ybest = np.pi * rf.planck(freq, Tbest, inp="Hz", out="freq")
        # plot the solution
        plt.plot(freq, flux, 'b*', label='Spectral T: %f' % self.sp.T)
        plt.plot(freq, ybest, 'r-', label='Best Tcol: %f' % Tbest)
        plt.xscale('log')
        plt.yscale('log')
        plt.legend(loc=3)
        plt.show()

        self.assertAlmostEqual(
            Tbest,
            self.sp.T,
            msg="For planck  Tcolor [{:,f}] should be equal sp.T [{:,f}].".
            format(Tbest, self.sp.T),
            delta=Tbest * 0.01)
Exemple #7
0
 def func(nu, T):
     return np.pi * rf.planck(nu, T, inp="Hz", out="freq")
Exemple #8
0
 def __init__(self, freq, temperature, W, name='wbb'):
     freq = np.array(freq)
     flux = math.pi * W * rf.planck(freq, temperature=temperature)
     Spectrum.__init__(self, name, freq=freq, flux=flux)
     self._W = W
     self._T = temperature
Exemple #9
0
 def __init__(self, freq, temperature, name='bb'):
     flux = math.pi * rf.planck(freq, temperature=temperature)
     Spectrum.__init__(self, name, freq=freq, flux=flux)
     self._T = temperature
Exemple #10
0
 def func(nu, T):
     return np.pi * rf.planck(nu, T, inp="Hz", out="freq")
Exemple #11
0
 def __init__(self, freq, temperature, W, name='wbb'):
     flux = math.pi * W * rf.planck(freq, temperature=temperature)
     Spectrum.__init__(self, name, freq=freq, flux=flux)
     self._W = W
     self._T = temperature