Exemple #1
0
def main():
    w = PyStopwatch()

    parser = ConfigArgumentParser(conflict_handler="resolve")
    parser.add_argument(
        "--dataroot",
        type=str,
        default="/data/private/pretrainedmodels",
        help="torchvision data folder",
    )
    parser.add_argument("--until", type=int, default=5)
    parser.add_argument("--num-op", type=int, default=2)
    parser.add_argument("--num-policy", type=int, default=5)
    parser.add_argument("--num-search", type=int, default=200)
    parser.add_argument("--cv-ratio", type=float, default=0.4)
    parser.add_argument("--decay", type=float, default=-1)
    parser.add_argument("--redis", type=str, default="gpu-cloud-vnode30.dakao.io:23655")
    parser.add_argument("--per-class", action="store_true")
    parser.add_argument("--resume", action="store_true")
    parser.add_argument("--smoke-test", action="store_true")
    args = parser.parse_args()

    if args.decay > 0:
        logger.info("decay=%.4f" % args.decay)
        C.get()["optimizer"]["decay"] = args.decay

    add_filehandler(
        logger,
        os.path.join(
            "models",
            "%s_%s_cv%.1f.log"
            % (C.get()["dataset"], C.get()["model"]["type"], args.cv_ratio),
        ),
    )
    logger.info("configuration...")
    logger.info(json.dumps(C.get().conf, sort_keys=True, indent=4))
    logger.info("initialize ray...")
    ray.init(address=args.redis)

    num_result_per_cv = 10
    cv_num = 5
    copied_c = copy.deepcopy(C.get().conf)

    logger.info(
        "search augmentation policies, dataset=%s model=%s"
        % (C.get()["dataset"], C.get()["model"]["type"])
    )
    logger.info(
        "----- Train without Augmentations cv=%d ratio(test)=%.1f -----"
        % (cv_num, args.cv_ratio)
    )
    w.start(tag="train_no_aug")
    paths = [
        _get_path(
            C.get()["dataset"],
            C.get()["model"]["type"],
            "ratio%.1f_fold%d" % (args.cv_ratio, i),
        )
        for i in range(cv_num)
    ]
    print(paths)
    reqs = [
        train_model.remote(
            copy.deepcopy(copied_c),
            args.dataroot,
            C.get()["aug"],
            args.cv_ratio,
            i,
            save_path=paths[i],
            skip_exist=True,
        )
        for i in range(cv_num)
    ]

    tqdm_epoch = tqdm(range(C.get()["epoch"]))
    is_done = False
    for epoch in tqdm_epoch:
        while True:
            epochs_per_cv = OrderedDict()
            for cv_idx in range(cv_num):
                try:
                    latest_ckpt = torch.load(paths[cv_idx])
                    if "epoch" not in latest_ckpt:
                        epochs_per_cv["cv%d" % (cv_idx + 1)] = C.get()["epoch"]
                        continue
                    epochs_per_cv["cv%d" % (cv_idx + 1)] = latest_ckpt["epoch"]
                except Exception as e:
                    continue
            tqdm_epoch.set_postfix(epochs_per_cv)
            if (
                len(epochs_per_cv) == cv_num
                and min(epochs_per_cv.values()) >= C.get()["epoch"]
            ):
                is_done = True
            if len(epochs_per_cv) == cv_num and min(epochs_per_cv.values()) >= epoch:
                break
            time.sleep(10)
        if is_done:
            break

    logger.info("getting results...")
    pretrain_results = ray.get(reqs)
    for r_model, r_cv, r_dict in pretrain_results:
        logger.info(
            "model=%s cv=%d top1_train=%.4f top1_valid=%.4f"
            % (r_model, r_cv + 1, r_dict["top1_train"], r_dict["top1_valid"])
        )
    logger.info("processed in %.4f secs" % w.pause("train_no_aug"))

    if args.until == 1:
        sys.exit(0)

    logger.info("----- Search Test-Time Augmentation Policies -----")
    w.start(tag="search")

    ops = augment_list(False)
    space = {}
    for i in range(args.num_policy):
        for j in range(args.num_op):
            space["policy_%d_%d" % (i, j)] = hp.choice(
                "policy_%d_%d" % (i, j), list(range(0, len(ops)))
            )
            space["prob_%d_%d" % (i, j)] = hp.uniform("prob_%d_ %d" % (i, j), 0.0, 1.0)
            space["level_%d_%d" % (i, j)] = hp.uniform(
                "level_%d_ %d" % (i, j), 0.0, 1.0
            )

    final_policy_set = []
    total_computation = 0
    reward_attr = "top1_valid"  # top1_valid or minus_loss
    for _ in range(1):  # run multiple times.
        for cv_fold in range(cv_num):
            name = "search_%s_%s_fold%d_ratio%.1f" % (
                C.get()["dataset"],
                C.get()["model"]["type"],
                cv_fold,
                args.cv_ratio,
            )
            print(name)

            # def train(augs, rpt):
            def train(config, reporter):
                return eval_tta(
                    copy.deepcopy(copied_c), config, reporter, num_class, get_model, get_dataloaders
                )

            register_trainable(name, train)
            algo = HyperOptSearch(
                space, max_concurrent=4 * 20, metric=reward_attr, mode="max"
            )

            results = run(
                train,
                name=name,
                config={
                    "dataroot": args.dataroot,
                    "save_path": paths[cv_fold],
                    "cv_ratio_test": args.cv_ratio,
                    "cv_fold": cv_fold,
                    "num_op": args.num_op,
                    "num_policy": args.num_policy,
                },
                num_samples=4 if args.smoke_test else args.num_search,
                resources_per_trial={"gpu": 1},
                stop={"training_iteration": args.num_policy},
                search_alg=algo,
                scheduler=None,
                verbose=0,
                queue_trials=True,
                resume=args.resume,
                raise_on_failed_trial=False,
            )
            print()
            df = results.results_df

            import pickle

            with open("results.pickle", "wb") as fp:
                pickle.dump(results, fp)
            df.to_csv("df.csv")

            results = df.sort_values(by=reward_attr, ascending=False)
            # results = [x for x in results if x.last_result is not None]
            # results = sorted(results, key=lambda x: x.last_result[reward_attr], reverse=True)

            # calculate computation usage
            for _, result in results.iterrows():
                total_computation += result["elapsed_time"]

            for _, result in results.iloc[:num_result_per_cv].iterrows():
                final_policy = policy_decoder(
                    result, args.num_policy, args.num_op, prefix="config."
                )
                logger.info(
                    "loss=%.12f top1_valid=%.4f %s"
                    % (result["minus_loss"], result["top1_valid"], final_policy)
                )

                final_policy = remove_deplicates(final_policy)
                final_policy_set.extend(final_policy)

    logger.info(json.dumps(final_policy_set))
    logger.info("final_policy=%d" % len(final_policy_set))
    logger.info(
        "processed in %.4f secs, gpu hours=%.4f"
        % (w.pause("search"), total_computation / 3600.0)
    )
    logger.info(
        "----- Train with Augmentations model=%s dataset=%s aug=%s ratio(test)=%.1f -----"
        % (C.get()["model"]["type"], C.get()["dataset"], C.get()["aug"], args.cv_ratio)
    )
    w.start(tag="train_aug")

    num_experiments = 5
    default_path = [
        _get_path(
            C.get()["dataset"],
            C.get()["model"]["type"],
            "ratio%.1f_default%d" % (args.cv_ratio, _),
        )
        for _ in range(num_experiments)
    ]
    augment_path = [
        _get_path(
            C.get()["dataset"],
            C.get()["model"]["type"],
            "ratio%.1f_augment%d" % (args.cv_ratio, _),
        )
        for _ in range(num_experiments)
    ]
    reqs = [
        train_model.remote(
            copy.deepcopy(copied_c),
            args.dataroot,
            C.get()["aug"],
            0.0,
            0,
            save_path=default_path[_],
            skip_exist=True,
        )
        for _ in range(num_experiments)
    ] + [
        train_model.remote(
            copy.deepcopy(copied_c),
            args.dataroot,
            final_policy_set,
            0.0,
            0,
            save_path=augment_path[_],
        )
        for _ in range(num_experiments)
    ]

    tqdm_epoch = tqdm(range(C.get()["epoch"]))
    is_done = False
    for epoch in tqdm_epoch:
        while True:
            epochs = OrderedDict()
            for exp_idx in range(num_experiments):
                try:
                    if os.path.exists(default_path[exp_idx]):
                        latest_ckpt = torch.load(default_path[exp_idx])
                        epochs["default_exp%d" % (exp_idx + 1)] = latest_ckpt["epoch"]
                except:
                    pass
                try:
                    if os.path.exists(augment_path[exp_idx]):
                        latest_ckpt = torch.load(augment_path[exp_idx])
                        epochs["augment_exp%d" % (exp_idx + 1)] = latest_ckpt["epoch"]
                except:
                    pass

            tqdm_epoch.set_postfix(epochs)
            if (
                len(epochs) == num_experiments * 2
                and min(epochs.values()) >= C.get()["epoch"]
            ):
                is_done = True
            if len(epochs) == num_experiments * 2 and min(epochs.values()) >= epoch:
                break
            time.sleep(10)
        if is_done:
            break

    logger.info("getting results...")
    final_results = ray.get(reqs)

    for train_mode in ["default", "augment"]:
        avg = 0.0
        for _ in range(num_experiments):
            r_model, r_cv, r_dict = final_results.pop(0)
            logger.info(
                "[%s] top1_train=%.4f top1_test=%.4f"
                % (train_mode, r_dict["top1_train"], r_dict["top1_test"])
            )
            avg += r_dict["top1_test"]
        avg /= num_experiments
        logger.info(
            "[%s] top1_test average=%.4f (#experiments=%d)"
            % (train_mode, avg, num_experiments)
        )
    logger.info("processed in %.4f secs" % w.pause("train_aug"))

    logger.info(w)
Exemple #2
0
from tqdm import tqdm
# sys.path.insert(1, os.path.dirname(os.path.dirname(__file__)))
# sys.path.insert(1, os.path.dirname(__file__))
from augmentations_tuner.fastautoaugment.FastAutoAugment.archive import remove_deplicates, policy_decoder
from augmentations_tuner.fastautoaugment.FastAutoAugment.augmentations import augment_list
from augmentations_tuner.fastautoaugment.FastAutoAugment.common import get_logger, add_filehandler
from augmentations_tuner.fastautoaugment.FastAutoAugment.data import get_data
from augmentations_tuner.fastautoaugment.FastAutoAugment.metrics import Accumulator
from networks import get_model, num_class
from augmentations_tuner.fastautoaugment.FastAutoAugment.train import train_and_eval
# from theconf import Config as C, ConfigArgumentParser
import json
from pystopwatch2 import PyStopwatch
import argparse
from easydict import EasyDict as edict
w = PyStopwatch()
from object_detecter.csv_eval import evaluate
top1_valid_by_cv = defaultdict(lambda: list)


def step_w_log(self):
    original = gorilla.get_original_attribute(
        ray.tune.trial_runner.TrialRunner, 'step')

    # log
    cnts = OrderedDict()
    for status in [
            Trial.RUNNING, Trial.TERMINATED, Trial.PENDING, Trial.PAUSED,
            Trial.ERROR
    ]:
        cnt = len(list(filter(lambda x: x.status == status, self._trials)))
Exemple #3
0
    del model
    # metrics = metrics / 'cnt'
    gpu_secs = (time.time() - start_t) * torch.cuda.device_count()
    # print(metrics)
    reporter(minus_loss=metrics['minus_loss'],
             top1_valid=metrics['correct'],
             elapsed_time=gpu_secs,
             done=True)
    return metrics['minus_loss']


if __name__ == '__main__':
    import json
    from pystopwatch2 import PyStopwatch

    w = PyStopwatch()

    parser = ConfigArgumentParser(conflict_handler='resolve')
    parser.add_argument('--dataroot',
                        type=str,
                        default='../data',
                        help='torchvision data folder')
    parser.add_argument('--until', type=int, default=5)
    parser.add_argument('--num-op', type=int, default=2)
    parser.add_argument('--num_cv', type=int, default=5)
    parser.add_argument('--num-policy', type=int, default=5)
    parser.add_argument('--num-search', type=int, default=100)
    parser.add_argument('--cv-ratio', type=float, default=0.4)
    parser.add_argument('--dc_model',
                        type=str,
                        default='pointnetv7',
Exemple #4
0
        # nsml.load(checkpoint='transfer', session='team_286/8_iret_food/12')
        # nsml.load(checkpoint='20', session='team_286/9_iret_car/16')
        nsml.save('resave')
        sys.exit(0)

    tr_loader, val_loader, val_label = data_loader_with_split(root=TRAIN_DATASET_PATH, cv_ratio=config.ratio, cv=config.cv, batch_size=C.get()['batch'])
    time_ = datetime.datetime.now()
    best_val_top1 = 0

    dataiter = iter(tr_loader)
    num_steps = 100000 // C.get()['batch']

    from pystopwatch2 import PyStopwatch

    for epoch in range(C.get()['epochs']):
        w = PyStopwatch()
        metrics = Accumulator()
        scheduler.step()
        model.train()
        cnt = 0
        for iter_ in range(num_steps):
            w.start(tag='step1')
            _, x, label = next(dataiter)
            if cuda:
                x, label = x.cuda(), label.cuda()

            w.pause(tag='step1')
            cutmix = C.get().conf.get('cutmix', defaultdict(lambda: 0.))
            cutmix_alpha = cutmix['alpha']
            cutmix_prob = cutmix['prob']
Exemple #5
0
        pass

    del model
    metrics = metrics / 'cnt'
    gpu_secs = (time.time() - start_t) * torch.cuda.device_count()
    reporter(minus_loss=metrics['minus_loss'],
             top1_valid=metrics['correct'],
             elapsed_time=gpu_secs,
             done=True)
    return metrics['correct']


if __name__ == '__main__':
    import json
    from pystopwatch2 import PyStopwatch
    w = PyStopwatch()  # 初始化一个秒表

    # ? 命令里面的 -c xxx.yaml不知道在哪里定义的
    parser = ConfigArgumentParser(conflict_handler='resolve')
    parser.add_argument('--dataroot',
                        type=str,
                        default='/data/private/pretrainedmodels',
                        help='torchvision data folder')
    parser.add_argument('--until', type=int, default=5)  # ?
    parser.add_argument('--num-op', type=int, default=2)  # 每个子策略里面的op数量
    parser.add_argument('--num-policy', type=int,
                        default=5)  # 每个policy里面包含5个子策略
    parser.add_argument('--num-search', type=int,
                        default=200)  # ?还不确定,论文里写是每次贝叶斯优化的策略集合B的大小
    parser.add_argument('--cv-ratio', type=float, default=0.4)  # ?交叉验证的比例
    parser.add_argument('--decay', type=float, default=-1)  # ?可能是学习率衰减
Exemple #6
0
    del model
    metrics = metrics / 'cnt'
    gpu_secs = (time.time() - start_t) * torch.cuda.device_count()
    # reporter(minus_loss=metrics['minus_loss'], top1_valid=metrics['correct'], elapsed_time=gpu_secs, done=True)
    tune.track.log(minus_loss=metrics['minus_loss'],
                   top1_valid=metrics['correct'],
                   elapsed_time=gpu_secs,
                   done=True)
    return metrics['correct']


if __name__ == '__main__':
    import json
    from pystopwatch2 import PyStopwatch

    w = PyStopwatch()

    parser = ConfigArgumentParser(conflict_handler='resolve')
    parser.add_argument('--dataroot',
                        type=str,
                        default='/home/noam/data/private/pretrainedmodels',
                        help='torchvision data folder')
    parser.add_argument('--until', type=int, default=5)
    parser.add_argument('--num-op', type=int, default=2)
    parser.add_argument('--num-policy', type=int, default=5)
    parser.add_argument('--num-search', type=int, default=200)
    parser.add_argument('--cv-ratio', type=float, default=0.4)
    parser.add_argument('--decay', type=float, default=-1)
    parser.add_argument('--redis',
                        type=str,
                        default='gpu-cloud-vnode30.dakao.io:23655')
Exemple #7
0
        best_top1_acc = max(best_top1_acc, trial.last_result['top1_valid'])
    print('iter',
          self._iteration,
          'top1_acc=%.3f' % best_top1_acc,
          cnts,
          end='\r')
    return original(self)


patch = gorilla.Patch(TrialRunner,
                      'step',
                      step_w_log,
                      settings=gorilla.Settings(allow_hit=True))
gorilla.apply(patch)

watcher = PyStopwatch()
logger = get_logger('Fast AutoAugment')


@ray.remote(num_gpus=4, max_calls=1)
def train_model(config,
                dataroot,
                augment,
                cv_ratio_test,
                cv_fold,
                save_path=None,
                skip_exist=False):  # TODO: 解耦这里的config相关操作
    Config.get()
    Config.get().conf = config
    Config.get()['aug'] = augment