def __init__(self): # Network configuration self.config = yaml.load(open(load_config("zeta"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) self.penalty_weight = { "T1": 1000, "T2": 5000, "T3": 5000, "T4": 5000, "T5": 5000, "T6": 10000 } # Create an object for storing the data points self.data_log = { "performance_measure": [], "simulation_time": [], "flow": {}, "flooding": {}, "depthN": {}, } # Log the initial simulation time self.data_log["simulation_time"].append( self.env.sim._model.getCurrentSimulationTime()) # Data logger for storing _performance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("delta"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) self.threshold = 12.0 self.depth_thresholds = { "basin_C": (5.7, 2.21, 3.8, 3.28), "basin_S": (6.55, 9.5), "basin_N1": (5.92, 2.11, 5.8, 5.2), "basin_N2": (6.59, 4.04, 5.04, 4.44), "basin_N3": (11.99, 5.28, 5.92, 5.32), } # Additional penalty definition self.max_penalty = 10**6 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = { "performance_measure": [], "depthN": {}, "flow": {}, "flooding": {}, } # Data logger for storing _performance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("epsilon"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) self.config["binary"] = load_binary(self.config["binary"]) # Dry weather TSS loading, measured at the outlet of the network self._performormance_threshold = 1.075 # Kg/sec # Create the env based on the config file self.env = environment(self.config, ctrl=True, binary=self.config["binary"]) # Create an object for storing data self.data_log = { "performance_measure": [], "loading": {}, "pollutantL": {}, "flow": {}, "flooding": {}, } # Data logger for storing _performormance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("theta"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) self.threshold = 0.5 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = {"performance_measure": [], "flow": {}, "flooding": {}} # Data logger for storing _performance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []
def __init__(self): # Network configuration self.config = yaml.load(open(load_config("gamma"), "r"), yaml.FullLoader) self.config["swmm_input"] = load_network(self.config["name"]) # Common threhold for the network, can be done independently self._performormance_threshold = 4.0 # Create the environment based on the physical parameters self.env = environment(self.config, ctrl=True) # Create an object for storing the data points self.data_log = { "performance_measure": [], "flow": {}, "flooding": {}, "depthN": {}, "simulation_time": [], } # Data logger for storing _performormance data for ID, attribute in self.config["performance_targets"]: self.data_log[attribute][ID] = []