def test_multinomial_checker_subgradient():
    X, Y = generate_checker_multinomial(n_samples=10, noise=0.4)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=50)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
def test_multinomial_checker_subgradient():
    X, Y = generate_checker_multinomial(n_samples=10, noise=0.4)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=50)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
Exemple #3
0
def test_multinomial_checker_cutting_plane():
    X, Y = generate_checker_multinomial(n_samples=10, noise=.1)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = NSlackSSVM(model=crf, max_iter=20, C=100000, check_constraints=True)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)