def main(C=1, test=False): ds = PascalSegmentation() # load training data edge_type = "pairwise" if test: which = "train" else: which = "kTrain" data_train = load_pascal(which=which, sp_type="cpmc") data_train = add_edges(data_train, edge_type) data_train = add_edge_features(ds, data_train) data_train = discard_void(ds, data_train, ds.void_label) print("number of samples: %s" % len(data_train.X)) class_weights = 1. / np.bincount(np.hstack(data_train.Y)) class_weights *= 21. / np.sum(class_weights) print(class_weights) #model = crfs.GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo', class_weight=class_weights) model = crfs.EdgeFeatureGraphCRF(inference_method='qpbo', class_weight=class_weights, symmetric_edge_features=[0, 1], antisymmetric_edge_features=[2]) experiment_name = "cpmc_edge_features_trainval_new_%f" % C #warm_start = True warm_start = False ssvm = learners.OneSlackSSVM(model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.0001, show_loss_every=50, inference_cache=50, cache_tol='auto', logger=SaveLogger(experiment_name + ".pickle", save_every=100), inactive_threshold=1e-5, break_on_bad=False, inactive_window=50, switch_to=None) #ssvm = learners.SubgradientSSVM( #model, verbose=3, C=C, max_iter=10000, n_jobs=-1, show_loss_every=10, #logger=SaveLogger(experiment_name + ".pickle", save_every=10), #momentum=0, learning_rate=0.1, decay_exponent=1, decay_t0=100) if warm_start: ssvm = SaveLogger(experiment_name + ".pickle").load() ssvm.logger = SaveLogger(file_name=experiment_name + "_refit.pickle", save_every=10) #ssvm.learning_rate = 0.000001 ssvm.model.inference_method = 'ad3bb' #ssvm.n_jobs = 1 ssvm.fit(data_train.X, data_train.Y, warm_start=warm_start) return print("fit finished!") if test: data_val = load_pascal('val') else: data_val = load_pascal('kVal') data_val = add_edges(data_val, edge_type) data_val = add_edge_features(ds, data_val, more_colors=True) eval_on_sp(ds, data_val, ssvm.predict(data_val.X), print_results=True)
def main(C=1, test=False): # load training data #independent = True independent = False data_train = load_data(which="piecewise") data_train = add_edges(data_train, independent=independent, fully_connected=True) data_train = add_kraehenbuehl_features(data_train, which="train_30px") data_train = add_kraehenbuehl_features(data_train, which="train") #data_train = load_data_global_probs() if not independent: data_train = add_edge_features(data_train) data_train = discard_void(data_train, 21) if test: data_val = load_data("val", which="piecewise_train") data_val = add_edges(data_val, independent=independent) data_val = add_kraehenbuehl_features(data_val, which="train_30px") data_val = add_kraehenbuehl_features(data_val, which="train") data_val = add_edge_features(data_val) data_val = discard_void(data_val, 21) data_train = concatenate_datasets(data_train, data_val) #X_.extend(data_val.X) #Y_.extend(data_val.Y) n_states = 21 print("number of samples: %s" % len(data_train.X)) class_weights = 1. / np.bincount(np.hstack(data_train.Y)) #class_weights[21] = 0 class_weights *= 21. / np.sum(class_weights) #class_weights = np.ones(n_states) print(class_weights) #model = crfs.GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo', class_weight=class_weights) model = crfs.EdgeFeatureGraphCRF(n_states=n_states, n_features=data_train.X[0][0].shape[1], inference_method='qpbo', class_weight=class_weights, n_edge_features=3, symmetric_edge_features=[0, 1], antisymmetric_edge_features=[2]) experiment_name = "fully_connected_%f" % C #warm_start = True warm_start = False ssvm = learners.OneSlackSSVM(model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.0001, show_loss_every=50, inference_cache=50, cache_tol='auto', logger=SaveLogger(experiment_name + ".pickle", save_every=100), inactive_threshold=1e-5, break_on_bad=False, inactive_window=50, switch_to_ad3=False) #ssvm = learners.SubgradientSSVM( #model, verbose=3, C=C, max_iter=10000, n_jobs=-1, show_loss_every=10, #logger=SaveLogger(experiment_name + ".pickle", save_every=10), #momentum=0, learning_rate=0.001, decay_exponent=1) if warm_start: ssvm = SaveLogger(experiment_name + ".pickle").load() ssvm.logger = SaveLogger(file_name=experiment_name + "_refit.pickle", save_every=10) ssvm.learning_rate = 0.000001 #ssvm.model.inference_method = 'ad3' #ssvm.n_jobs = 1 ssvm.fit(data_train.X, data_train.Y, warm_start=warm_start) print("fit finished!") return
def main(C=1, test=False): ds = PascalSegmentation() # load training data edge_type = "pairwise" if test: which = "train" else: which = "kTrain" data_train = load_pascal(which=which, sp_type="cpmc") data_train = add_edges(data_train, edge_type) data_train = add_edge_features(ds, data_train) data_train = discard_void(ds, data_train, ds.void_label) print("number of samples: %s" % len(data_train.X)) class_weights = 1. / np.bincount(np.hstack(data_train.Y)) class_weights *= 21. / np.sum(class_weights) print(class_weights) #model = crfs.GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo', class_weight=class_weights) model = crfs.EdgeFeatureGraphCRF(inference_method='qpbo', class_weight=class_weights, symmetric_edge_features=[0, 1], antisymmetric_edge_features=[2]) experiment_name = "cpmc_edge_features_trainval_new_%f" % C #warm_start = True warm_start = False ssvm = learners.OneSlackSSVM( model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.0001, show_loss_every=50, inference_cache=50, cache_tol='auto', logger=SaveLogger(experiment_name + ".pickle", save_every=100), inactive_threshold=1e-5, break_on_bad=False, inactive_window=50, switch_to=None) #ssvm = learners.SubgradientSSVM( #model, verbose=3, C=C, max_iter=10000, n_jobs=-1, show_loss_every=10, #logger=SaveLogger(experiment_name + ".pickle", save_every=10), #momentum=0, learning_rate=0.1, decay_exponent=1, decay_t0=100) if warm_start: ssvm = SaveLogger(experiment_name + ".pickle").load() ssvm.logger = SaveLogger( file_name=experiment_name + "_refit.pickle", save_every=10) #ssvm.learning_rate = 0.000001 ssvm.model.inference_method = 'ad3bb' #ssvm.n_jobs = 1 ssvm.fit(data_train.X, data_train.Y, warm_start=warm_start) return print("fit finished!") if test: data_val = load_pascal('val') else: data_val = load_pascal('kVal') data_val = add_edges(data_val, edge_type) data_val = add_edge_features(ds, data_val, more_colors=True) eval_on_sp(ds, data_val, ssvm.predict(data_val.X), print_results=True)
def main(C=1, test=False): # load training data #independent = True independent = False data_train = load_data(which="piecewise") data_train = add_edges(data_train, independent=independent, fully_connected=True) data_train = add_kraehenbuehl_features(data_train, which="train_30px") data_train = add_kraehenbuehl_features(data_train, which="train") #data_train = load_data_global_probs() if not independent: data_train = add_edge_features(data_train) data_train = discard_void(data_train, 21) if test: data_val = load_data("val", which="piecewise_train") data_val = add_edges(data_val, independent=independent) data_val = add_kraehenbuehl_features(data_val, which="train_30px") data_val = add_kraehenbuehl_features(data_val, which="train") data_val = add_edge_features(data_val) data_val = discard_void(data_val, 21) data_train = concatenate_datasets(data_train, data_val) #X_.extend(data_val.X) #Y_.extend(data_val.Y) n_states = 21 print("number of samples: %s" % len(data_train.X)) class_weights = 1. / np.bincount(np.hstack(data_train.Y)) #class_weights[21] = 0 class_weights *= 21. / np.sum(class_weights) #class_weights = np.ones(n_states) print(class_weights) #model = crfs.GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo', class_weight=class_weights) model = crfs.EdgeFeatureGraphCRF(n_states=n_states, n_features=data_train.X[0][0].shape[1], inference_method='qpbo', class_weight=class_weights, n_edge_features=3, symmetric_edge_features=[0, 1], antisymmetric_edge_features=[2]) experiment_name = "fully_connected_%f" % C #warm_start = True warm_start = False ssvm = learners.OneSlackSSVM( model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.0001, show_loss_every=50, inference_cache=50, cache_tol='auto', logger=SaveLogger(experiment_name + ".pickle", save_every=100), inactive_threshold=1e-5, break_on_bad=False, inactive_window=50, switch_to_ad3=False) #ssvm = learners.SubgradientSSVM( #model, verbose=3, C=C, max_iter=10000, n_jobs=-1, show_loss_every=10, #logger=SaveLogger(experiment_name + ".pickle", save_every=10), #momentum=0, learning_rate=0.001, decay_exponent=1) if warm_start: ssvm = SaveLogger(experiment_name + ".pickle").load() ssvm.logger = SaveLogger( file_name=experiment_name + "_refit.pickle", save_every=10) ssvm.learning_rate = 0.000001 #ssvm.model.inference_method = 'ad3' #ssvm.n_jobs = 1 ssvm.fit(data_train.X, data_train.Y, warm_start=warm_start) print("fit finished!") return