Exemple #1
0
def load_hic_data_from_reads(fnam, resolution, **kwargs):
    """
    :param fnam: tsv file with reads1 and reads2
    :param resolution: the resolution of the experiment (size of a bin in
       bases)
    :param genome_seq: a dictionary containing the genomic sequence by
       chromosome
    :param False get_sections: for very very high resolution, when the column
       index does not fit in memory
    """
    sections = []
    genome_seq = OrderedDict()
    fhandler = open(fnam)
    line = fhandler.next()
    size = 0
    while line.startswith('#'):
        if line.startswith('# CRM '):
            crm, clen = line[6:].split()
            genome_seq[crm] = int(clen) / resolution + 1
            size += genome_seq[crm]
        line = fhandler.next()
    section_sizes = {}
    if kwargs.get('get_sections', True):
        for crm in genome_seq:
            len_crm = genome_seq[crm]
            section_sizes[(crm, )] = len_crm
            sections.extend([(crm, i) for i in xrange(len_crm)])
    dict_sec = dict([(j, i) for i, j in enumerate(sections)])
    imx = HiC_data((), size, genome_seq, dict_sec, resolution=resolution)
    try:
        while True:
            _, cr1, ps1, _, _, _, _, cr2, ps2, _ = line.split('\t', 9)
            try:
                ps1 = dict_sec[(cr1, int(ps1) / resolution)]
                ps2 = dict_sec[(cr2, int(ps2) / resolution)]
            except KeyError:
                ps1 = int(ps1) / resolution
                ps2 = int(ps2) / resolution
            imx[ps1, ps2] += 1
            imx[ps2, ps1] += 1
            line = fhandler.next()
    except StopIteration:
        pass
    imx.symmetricized = True
    return imx
Exemple #2
0
def optimal_reader(f, normalized=False, resolution=1):
    """
    Reads a matrix generated by TADbit.
    Can be slower than autoreader, but uses almost a third of the memory

    :param f: an iterable (typically an open file).
    :param False normalized: if the matrix is normalized
    :param 1 resolution: resolution of the matrix

    """
    # get masked bins
    masked = {}
    pos = 0
    for line in f:
        if line[0] != '#':
            break
        pos += len(line)
        if line.startswith('# MASKED'):
            masked = dict([(int(n), True) for n in line.split()[2:]])
    f.seek(pos)

    # super fast
    header = [tuple(line.split(None, 2)[:2]) for line in f]

    f.seek(pos)

    ncol = len(header)

    # Get the numeric values and remove extra columns
    num = float if normalized else int
    chromosomes, sections, resolution = _header_to_section(header, resolution)

    #############################################################
    # monkey patch HiC_data to make it faster
    def fast_setitem(self, key, val):
        "Use directly dict setitem"
        super(HiC_data, self).__setitem__(key, val)

    def fast_getitem(self, key):
        "Use directly dict setitem"
        try:
            return super(HiC_data, self).__getitem__(key)
        except KeyError:
            return 0

    original_setitem = HiC_data.__setitem__
    original_getitem = HiC_data.__getitem__
    # apply_async the patch
    HiC_data.__setitem__ = fast_setitem
    HiC_data.__getitem__ = fast_getitem

    hic = HiC_data(
        ((j, num(v)) for i, line in enumerate(f)
         for j, v in enumerate(line.split()[2:], i * ncol) if num(v)),
        size=ncol,
        masked=masked,
        dict_sec=sections,
        chromosomes=chromosomes,
        resolution=resolution,
        symmetricized=False)

    # make it symmetric
    if is_asymmetric_dico(hic):
        hic.symmetricized = True
        symmetrize_dico(hic)

    # undo patching
    HiC_data.__setitem__ = original_setitem
    HiC_data.__getitem__ = original_getitem
    hic.__setitem__ = original_setitem
    hic.__getitem__ = original_getitem
    #############################################################
    return hic
Exemple #3
0
def load_hic_data_from_bam(fnam,
                           resolution,
                           biases=None,
                           tmpdir='.',
                           ncpus=8,
                           filter_exclude=(1, 2, 3, 4, 6, 7, 8, 9, 10),
                           region=None,
                           verbose=True,
                           clean=True):
    """
    :param fnam: TADbit-generated BAM file with read-ends1 and read-ends2
    :param resolution: the resolution of the experiment (size of a bin in
       bases)
    :param None biases: path to pickle file where are stored the biases. Keys
       in this file should be: 'biases', 'badcol', 'decay' and 'resolution'
    :param '.' tmpdir: path to folder where to create temporary files
    :param 8 ncpus:
    :param (1, 2, 3, 4, 6, 7, 8, 9, 10) filter exclude: filters to define the
       set of valid pair of reads.
    :param None region: chromosome name, if None, all genome will be loaded

    :returns: HiC_data object
    """
    bam = AlignmentFile(fnam)
    genome_seq = OrderedDict((c, l) for c, l in zip(
        bam.references, [x / resolution + 1 for x in bam.lengths]))
    bam.close()

    sections = []
    for crm in genome_seq:
        len_crm = genome_seq[crm]
        sections.extend([(crm, i) for i in xrange(len_crm)])

    size = sum(genome_seq.values())

    chromosomes = {region: genome_seq[region]} if region else genome_seq
    dict_sec = dict([(j, i) for i, j in enumerate(sections)])
    imx = HiC_data((),
                   size,
                   chromosomes=chromosomes,
                   dict_sec=dict_sec,
                   resolution=resolution)

    if biases:
        if isinstance(biases, basestring):
            biases = load(open(biases))
        if biases['resolution'] != resolution:
            raise Exception('ERROR: resolution of biases do not match to the '
                            'one wanted (%d vs %d)' %
                            (biases['resolution'], resolution))
        if region:
            chrom_start = 0
            for crm in genome_seq:
                if crm == region:
                    break
                len_crm = genome_seq[crm]
                chrom_start += len_crm
            imx.bads = dict((b - chrom_start, biases['badcol'][b])
                            for b in biases['badcol'])
            imx.bias = dict((b - chrom_start, biases['biases'][b])
                            for b in biases['biases'])
        else:
            imx.bads = biases['badcol']
            imx.bias = biases['biases']
        imx.expected = biases['decay']

    get_matrix(fnam,
               resolution,
               biases=None,
               filter_exclude=filter_exclude,
               normalization='raw',
               tmpdir=tmpdir,
               clean=clean,
               ncpus=ncpus,
               dico=imx,
               region1=region,
               verbose=verbose)
    imx._symmetricize()
    imx.symmetricized = True

    return imx
Exemple #4
0
def read_matrix(things, parser=None, hic=True, resolution=1, **kwargs):
    """
    Read and checks a matrix from a file (using
    :func:`pytadbit.parser.hic_parser.autoreader`) or a list.

    :param things: might be either a file name, a file handler or a list of
        list (all with same length)
    :param None parser: a parser function that returns a tuple of lists
       representing the data matrix,
       with this file example.tsv:
       ::

         chrT_001    chrT_002    chrT_003    chrT_004
         chrT_001    629    164    88    105
         chrT_002    86    612    175    110
         chrT_003    159    216    437    105
         chrT_004    100    111    146    278

       the output of parser('example.tsv') might be:
       ``([629, 86, 159, 100, 164, 612, 216, 111, 88, 175, 437, 146, 105, 110,
       105, 278])``

    :param 1 resolution: resolution of the matrix
    :param True hic: if False, TADbit assumes that files contains normalized
       data
    :returns: the corresponding matrix concatenated into a huge list, also
       returns number or rows

    """
    one = kwargs.get('one', True)
    global HIC_DATA
    HIC_DATA = hic
    if not isinstance(things, list):
        things = [things]
    matrices = []
    for thing in things:
        if isinstance(thing, HiC_data):
            matrices.append(thing)
        elif isinstance(thing, file):
            parser = parser or (abc_reader if __is_abc(thing) else autoreader)
            matrix, size, header, masked, sym = parser(thing)
            print(header)
            thing.close()
            chromosomes, sections, resolution = _header_to_section(
                header, resolution)
            matrices.append(
                HiC_data(matrix,
                         size,
                         dict_sec=sections,
                         chromosomes=chromosomes,
                         resolution=resolution,
                         symmetricized=sym,
                         masked=masked))
        elif isinstance(thing, str):
            if is_cooler(thing, resolution if resolution > 1 else None):
                matrix, size, header, masked, sym = parse_cooler(
                    thing, resolution if resolution > 1 else None, not hic)
            else:
                try:
                    parser = parser or (abc_reader if __is_abc(gzopen(thing))
                                        else autoreader)
                    matrix, size, header, masked, sym = parser(gzopen(thing))
                except IOError:
                    if len(thing.split('\n')) > 1:
                        parser = parser or (abc_reader if __is_abc(
                            thing.split('\n')) else autoreader)
                        matrix, size, header, masked, sym = parser(
                            thing.split('\n'))
                    else:
                        raise IOError('\n   ERROR: file %s not found\n' %
                                      thing)
            sections = dict([(h, i) for i, h in enumerate(header)])
            chromosomes, sections, resolution = _header_to_section(
                header, resolution)
            matrices.append(
                HiC_data(matrix,
                         size,
                         dict_sec=sections,
                         chromosomes=chromosomes,
                         masked=masked,
                         resolution=resolution,
                         symmetricized=sym))
        elif isinstance(thing, list):
            if all([len(thing) == len(l) for l in thing]):
                size = len(thing)
                matrix = [(i + j * size, v) for i, l in enumerate(thing)
                          for j, v in enumerate(l) if v]
            else:
                raise Exception('must be list of lists, all with same length.')
            matrices.append(HiC_data(matrix, size))
        elif isinstance(thing, tuple):
            # case we know what we are doing and passing directly list of tuples
            matrix = thing
            siz = sqrt(len(thing))
            if int(siz) != siz:
                raise AttributeError('ERROR: matrix should be square.\n')
            size = int(siz)
            matrices.append(HiC_data(matrix, size))
        elif 'matrix' in str(type(thing)):
            try:
                row, col = thing.shape
                if row != col:
                    raise Exception('matrix needs to be square.')
                matrix = thing.reshape(-1).tolist()[0]
                size = row
            except Exception as exc:
                print 'Error found:', exc
            matrices.append(HiC_data(matrix, size))
        else:
            raise Exception('Unable to read this file or whatever it is :)')
    if one:
        return matrices[0]
    else:
        return matrices
Exemple #5
0
def run(opts):
    check_options(opts)
    launch_time = time.localtime()
    param_hash = digest_parameters(opts, extra=['quiet'])

    coord1 = opts.coord1

    if not coord1:
        region1 = None
        start1 = None
        end1 = None
    else:
        try:
            crm1, pos1 = coord1.split(':')
            start1, end1 = pos1.split('-')
            region1 = crm1
            start1 = int(start1)
            end1 = int(end1)
        except ValueError:
            region1 = coord1
            start1 = None
            end1 = None

    printime('Importing hic in %s format' % opts.format)
    if opts.format == 'matrix' or opts.format == 'text':
        with gzopen(opts.input) as f_thing:
            masked, chroms_gen, crm, beg, _, _ = read_file_header(f_thing)
        if not chroms_gen or (region1 and region1 not in chroms_gen):
            raise Exception(
                '''ERROR: Chromosome size not included in import file.
                             Please include the chromosome sizes of the data that
                             you want to import in the header of the file. Example:
                             # CRM chr1    249250621''')
    elif opts.format == 'cooler':
        if is_cooler(opts.input, opts.reso if opts.reso > 1 else None):
            chroms_gen = parse_header(opts.input,
                                      opts.reso if opts.reso > 1 else None)
            if not chroms_gen or (region1 and region1 not in chroms_gen):
                raise Exception(
                    '''ERROR: Chromosome size not included in import file.
                                ''')
        else:
            raise Exception('''ERROR: The input file is not a cooler''')

    chroms = OrderedDict(
        (crm, int(chroms_gen[crm] // opts.reso) + 1) for crm in chroms_gen)
    sections = []
    if not region1:
        size = 0
        for crm in chroms:
            size += chroms[crm]
            sections.extend([(crm, i) for i in range(chroms[crm])])
    elif not start1:
        size = chroms[region1]
        sections.extend([(region1, i) for i in range(size)])
    else:
        #size = (end1 - start1)//opts.reso
        size = chroms[region1]
        sections.extend([
            (region1, i)
            for i in range(start1 // opts.reso, (end1 // opts.reso))
        ])
    dict_sec = dict([(j, i) for i, j in enumerate(sections)])
    bias_file = None
    badcol = {}
    if opts.format == 'text':
        with gzopen(opts.input) as f_thing:
            matrix = abc_reader(f_thing, size,
                                start1 // opts.reso if start1 else None)
        size_mat = size
    elif opts.format == 'matrix':
        with gzopen(opts.input) as in_f:
            matrix, size_mat, _, masked, _ = autoreader(in_f)
        if size != size_mat:
            raise Exception('''ERROR: The size of the specified region is
                            different from the data in the matrix''')
    elif opts.format == 'cooler':
        matrix, weights, size, header = parse_cooler(
            opts.input,
            opts.reso if opts.reso > 1 else None,
            normalized=True,
            raw_values=True)
        masked = {}
        size_mat = size
        if len(set(weights)) > 1:
            printime('Transforming cooler weights to biases')
            outdir_norm = path.join(opts.workdir, '04_normalization')
            mkdir(outdir_norm)

            bias_file = path.join(
                outdir_norm, 'biases_%s_%s.pickle' %
                (nicer(opts.reso).replace(' ', ''), param_hash))
            out = open(bias_file, 'wb')
            badcol.update((i, True) for i, m in enumerate(weights) if m == 0)
            dump(
                {
                    'biases':
                    dict((k, b if b > 0 else float('nan'))
                         for k, b in enumerate(weights)),
                    'decay': {},
                    'badcol':
                    badcol,
                    'resolution':
                    opts.reso
                }, out, HIGHEST_PROTOCOL)
            out.close()

    hic = HiC_data(matrix,
                   size_mat,
                   dict_sec=dict_sec,
                   chromosomes=chroms,
                   masked=masked,
                   resolution=opts.reso)

    #from pytadbit.mapping.analyze import hic_map
    #hic_map(hic, normalized=False, focus='chr1', show=True, cmap='viridis')

    printime('Creating BAM file')
    outbam = path.join(opts.workdir, '03_filtered_reads',
                       'intersection_%s' % param_hash)

    total_counts = create_BAMhic(hic,
                                 opts.cpus,
                                 outbam,
                                 chroms_gen,
                                 opts.reso,
                                 samtools=opts.samtools)

    finish_time = time.localtime()
    # save all job information to sqlite DB
    save_to_db(opts, total_counts, size_mat, bias_file, len(badcol),
               outbam + '.bam', launch_time, finish_time)