Exemple #1
0
 def drive_fmm(wrangler, strengths, geo_data, kernel, kernel_arguments):
     del geo_data, kernel, kernel_arguments
     from pytential.qbx.fmm import drive_fmm
     if return_timing_data:
         timing_data = {}
     else:
         timing_data = None
     return drive_fmm(wrangler, strengths, timing_data), timing_data
def test_cost_model_correctness(ctx_factory, dim, off_surface,
        use_target_specific_qbx):
    """Check that computed cost matches that of a constant-one FMM."""
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    cost_model = QBXCostModel(
        translation_cost_model_factory=OpCountingTranslationCostModel)

    lpot_source = get_lpot_source(actx, dim).copy(
            cost_model=cost_model,
            _use_target_specific_qbx=use_target_specific_qbx)

    # Construct targets.
    if off_surface:
        from pytential.target import PointsTarget
        from boxtree.tools import make_uniform_particle_array
        ntargets = 10 ** 3
        targets = PointsTarget(
                make_uniform_particle_array(queue, ntargets, dim, np.float))
        target_discrs_and_qbx_sides = ((targets, 0),)
        qbx_forced_limit = None
    else:
        targets = lpot_source.density_discr
        target_discrs_and_qbx_sides = ((targets, 1),)
        qbx_forced_limit = 1
    places = GeometryCollection((lpot_source, targets))

    source_dd = places.auto_source
    density_discr = places.get_discretization(source_dd.geometry)

    # Construct bound op, run cost model.
    sigma_sym = sym.var("sigma")
    k_sym = LaplaceKernel(lpot_source.ambient_dim)
    sym_op_S = sym.S(k_sym, sigma_sym, qbx_forced_limit=qbx_forced_limit)

    op_S = bind(places, sym_op_S)
    sigma = get_density(actx, density_discr)

    from pytools import one
    modeled_time, _ = op_S.cost_per_stage("constant_one", sigma=sigma)
    modeled_time = one(modeled_time.values())

    # Run FMM with ConstantOneWrangler. This can't be done with pytential's
    # high-level interface, so call the FMM driver directly.
    from pytential.qbx.fmm import drive_fmm
    geo_data = lpot_source.qbx_fmm_geometry_data(
            places, source_dd.geometry,
            target_discrs_and_qbx_sides=target_discrs_and_qbx_sides)

    wrangler = ConstantOneQBXExpansionWrangler(
            queue, geo_data, use_target_specific_qbx)

    quad_stage2_density_discr = places.get_discretization(
            source_dd.geometry, sym.QBX_SOURCE_QUAD_STAGE2)
    ndofs = quad_stage2_density_discr.ndofs
    src_weights = np.ones(ndofs)

    timing_data = {}
    potential = drive_fmm(wrangler, (src_weights,), timing_data,
            traversal=wrangler.trav)[0][geo_data.ncenters:]

    # Check constant one wrangler for correctness.
    assert (potential == ndofs).all()

    # Check that the cost model matches the timing data returned by the
    # constant one wrangler.
    mismatches = []
    for stage in timing_data:
        if stage not in modeled_time:
            assert timing_data[stage]["ops_elapsed"] == 0
        else:
            if timing_data[stage]["ops_elapsed"] != modeled_time[stage]:
                mismatches.append(
                    (stage, timing_data[stage]["ops_elapsed"], modeled_time[stage]))

    assert not mismatches, "\n".join(str(s) for s in mismatches)

    # {{{ Test per-box cost

    total_cost = 0.0
    for stage in timing_data:
        total_cost += timing_data[stage]["ops_elapsed"]

    per_box_cost, _ = op_S.cost_per_box("constant_one", sigma=sigma)
    print(per_box_cost)
    per_box_cost = one(per_box_cost.values())

    total_aggregate_cost = cost_model.aggregate_over_boxes(per_box_cost)
    assert total_cost == (
            total_aggregate_cost
            + modeled_time["coarsen_multipoles"]
            + modeled_time["refine_locals"]
    )
Exemple #3
0
    def exec_layer_potential_insn_fmm(self, queue, insn, bound_expr, evaluate):
        # {{{ build list of unique target discretizations used

        # map (name, qbx_side) to number in list
        tgt_name_and_side_to_number = {}
        # list of tuples (discr, qbx_side)
        target_discrs_and_qbx_sides = []

        for o in insn.outputs:
            key = (o.target_name, o.qbx_forced_limit)
            if key not in tgt_name_and_side_to_number:
                tgt_name_and_side_to_number[key] = \
                        len(target_discrs_and_qbx_sides)

                target_discr = bound_expr.places[o.target_name]
                if isinstance(target_discr, LayerPotentialSource):
                    target_discr = target_discr.density_discr

                target_discrs_and_qbx_sides.append(
                        (target_discr, o.qbx_forced_limit))

        target_discrs_and_qbx_sides = tuple(target_discrs_and_qbx_sides)

        # }}}

        geo_data = self.qbx_fmm_geometry_data(target_discrs_and_qbx_sides)

        # FIXME Exert more positive control over geo_data attribute lifetimes using
        # geo_data.<method>.clear_cache(geo_data).

        # FIXME Synthesize "bad centers" around corners and edges that have
        # inadequate QBX coverage.

        # FIXME don't compute *all* output kernels on all targets--respect that
        # some target discretizations may only be asking for derivatives (e.g.)

        strengths = (evaluate(insn.density).with_queue(queue)
                * self.weights_and_area_elements())

        # {{{ get expansion wrangler

        base_kernel = None
        out_kernels = []

        from sumpy.kernel import AxisTargetDerivativeRemover
        for knl in insn.kernels:
            candidate_base_kernel = AxisTargetDerivativeRemover()(knl)

            if base_kernel is None:
                base_kernel = candidate_base_kernel
            else:
                assert base_kernel == candidate_base_kernel

        out_kernels = tuple(knl for knl in insn.kernels)

        if base_kernel.is_complex_valued or strengths.dtype.kind == "c":
            value_dtype = self.complex_dtype
        else:
            value_dtype = self.real_dtype

        # {{{ build extra_kwargs dictionaries

        # This contains things like the Helmholtz parameter k or
        # the normal directions for double layers.

        def reorder_sources(source_array):
            if isinstance(source_array, cl.array.Array):
                return (source_array
                        .with_queue(queue)
                        [geo_data.tree().user_point_source_ids]
                        .with_queue(None))
            else:
                return source_array

        kernel_extra_kwargs = {}
        source_extra_kwargs = {}

        from sumpy.tools import gather_arguments, gather_source_arguments
        from pytools.obj_array import with_object_array_or_scalar
        for func, var_dict in [
                (gather_arguments, kernel_extra_kwargs),
                (gather_source_arguments, source_extra_kwargs),
                ]:
            for arg in func(out_kernels):
                var_dict[arg.name] = with_object_array_or_scalar(
                        reorder_sources,
                        evaluate(insn.kernel_arguments[arg.name]))

        # }}}

        wrangler = self.expansion_wrangler_code_container(
                base_kernel, out_kernels).get_wrangler(
                        queue, geo_data, value_dtype,
                        source_extra_kwargs=source_extra_kwargs,
                        kernel_extra_kwargs=kernel_extra_kwargs)

        # }}}

        #geo_data.plot()

        if len(geo_data.global_qbx_centers()) != geo_data.center_info().ncenters:
            raise NotImplementedError("geometry has centers requiring local QBX")

        from pytential.qbx.geometry import target_state
        if (geo_data.user_target_to_center().with_queue(queue)
                == target_state.FAILED).get().any():
            raise RuntimeError("geometry has failed targets")

        # {{{ execute global QBX

        from pytential.qbx.fmm import drive_fmm
        all_potentials_on_every_tgt = drive_fmm(wrangler, strengths)

        # }}}

        result = []

        for o in insn.outputs:
            tgt_side_number = tgt_name_and_side_to_number[
                    o.target_name, o.qbx_forced_limit]
            tgt_slice = slice(*geo_data.target_info().target_discr_starts[
                    tgt_side_number:tgt_side_number+2])

            result.append(
                    (o.name,
                        all_potentials_on_every_tgt[o.kernel_index][tgt_slice]))

        return result, []
def test_cost_model_correctness(ctx_getter, dim, off_surface,
                                use_target_specific_qbx):
    """Check that computed cost matches that of a constant-one FMM."""
    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    cost_model = (CostModel(
        translation_cost_model_factory=OpCountingTranslationCostModel))

    lpot_source = get_lpot_source(queue, dim).copy(
        cost_model=cost_model,
        _use_target_specific_qbx=use_target_specific_qbx)

    # Construct targets.
    if off_surface:
        from pytential.target import PointsTarget
        from boxtree.tools import make_uniform_particle_array
        ntargets = 10**3
        targets = PointsTarget(
            make_uniform_particle_array(queue, ntargets, dim, np.float))
        target_discrs_and_qbx_sides = ((targets, 0), )
        qbx_forced_limit = None
    else:
        targets = lpot_source.density_discr
        target_discrs_and_qbx_sides = ((targets, 1), )
        qbx_forced_limit = 1

    # Construct bound op, run cost model.
    sigma_sym = sym.var("sigma")
    k_sym = LaplaceKernel(lpot_source.ambient_dim)
    sym_op_S = sym.S(k_sym, sigma_sym, qbx_forced_limit=qbx_forced_limit)

    op_S = bind((lpot_source, targets), sym_op_S)
    sigma = get_density(queue, lpot_source)

    from pytools import one
    cost_S = one(op_S.get_modeled_cost(queue, sigma=sigma).values())

    # Run FMM with ConstantOneWrangler. This can't be done with pytential's
    # high-level interface, so call the FMM driver directly.
    from pytential.qbx.fmm import drive_fmm
    geo_data = lpot_source.qbx_fmm_geometry_data(
        target_discrs_and_qbx_sides=target_discrs_and_qbx_sides)

    wrangler = ConstantOneQBXExpansionWrangler(queue, geo_data,
                                               use_target_specific_qbx)
    nnodes = lpot_source.quad_stage2_density_discr.nnodes
    src_weights = np.ones(nnodes)

    timing_data = {}
    potential = drive_fmm(wrangler,
                          src_weights,
                          timing_data,
                          traversal=wrangler.trav)[0][geo_data.ncenters:]

    # Check constant one wrangler for correctness.
    assert (potential == nnodes).all()

    modeled_time = cost_S.get_predicted_times(merge_close_lists=True)

    # Check that the cost model matches the timing data returned by the
    # constant one wrangler.
    mismatches = []
    for stage in timing_data:
        if timing_data[stage]["ops_elapsed"] != modeled_time[stage]:
            mismatches.append((stage, timing_data[stage]["ops_elapsed"],
                               modeled_time[stage]))

    assert not mismatches, "\n".join(str(s) for s in mismatches)
Exemple #5
0
    def exec_compute_potential_insn_fmm(self, queue, insn, bound_expr, evaluate):
        # {{{ build list of unique target discretizations used

        # map (name, qbx_side) to number in list
        tgt_name_and_side_to_number = {}
        # list of tuples (discr, qbx_side)
        target_discrs_and_qbx_sides = []

        for o in insn.outputs:
            key = (o.target_name, o.qbx_forced_limit)
            if key not in tgt_name_and_side_to_number:
                tgt_name_and_side_to_number[key] = \
                        len(target_discrs_and_qbx_sides)

                target_discr = bound_expr.places[o.target_name]
                if isinstance(target_discr, LayerPotentialSourceBase):
                    target_discr = target_discr.density_discr

                qbx_forced_limit = o.qbx_forced_limit
                if qbx_forced_limit is None:
                    qbx_forced_limit = 0

                target_discrs_and_qbx_sides.append(
                        (target_discr, qbx_forced_limit))

        target_discrs_and_qbx_sides = tuple(target_discrs_and_qbx_sides)

        # }}}

        geo_data = self.qbx_fmm_geometry_data(target_discrs_and_qbx_sides)

        # geo_data.plot()

        # FIXME Exert more positive control over geo_data attribute lifetimes using
        # geo_data.<method>.clear_cache(geo_data).

        # FIXME Synthesize "bad centers" around corners and edges that have
        # inadequate QBX coverage.

        # FIXME don't compute *all* output kernels on all targets--respect that
        # some target discretizations may only be asking for derivatives (e.g.)

        strengths = (evaluate(insn.density).with_queue(queue)
                * self.weights_and_area_elements())

        out_kernels = tuple(knl for knl in insn.kernels)
        fmm_kernel = self.get_fmm_kernel(out_kernels)
        output_and_expansion_dtype = (
                self.get_fmm_output_and_expansion_dtype(fmm_kernel, strengths))
        kernel_extra_kwargs, source_extra_kwargs = (
                self.get_fmm_expansion_wrangler_extra_kwargs(
                    queue, out_kernels, geo_data.tree().user_source_ids,
                    insn.kernel_arguments, evaluate))

        wrangler = self.expansion_wrangler_code_container(
                fmm_kernel, out_kernels).get_wrangler(
                        queue, geo_data, output_and_expansion_dtype,
                        self.qbx_order,
                        self.fmm_level_to_order,
                        source_extra_kwargs=source_extra_kwargs,
                        kernel_extra_kwargs=kernel_extra_kwargs)

        from pytential.qbx.geometry import target_state
        if (geo_data.user_target_to_center().with_queue(queue)
                == target_state.FAILED).any().get():
            raise RuntimeError("geometry has failed targets")

        # {{{ performance data hook

        if self.geometry_data_inspector is not None:
            perform_fmm = self.geometry_data_inspector(insn, bound_expr, geo_data)
            if not perform_fmm:
                return [(o.name, 0) for o in insn.outputs]

        # }}}

        # {{{ execute global QBX

        from pytential.qbx.fmm import drive_fmm
        all_potentials_on_every_tgt = drive_fmm(wrangler, strengths)

        # }}}

        result = []

        for o in insn.outputs:
            tgt_side_number = tgt_name_and_side_to_number[
                    o.target_name, o.qbx_forced_limit]
            tgt_slice = slice(*geo_data.target_info().target_discr_starts[
                    tgt_side_number:tgt_side_number+2])

            result.append(
                    (o.name,
                        all_potentials_on_every_tgt[o.kernel_index][tgt_slice]))

        return result