Exemple #1
0
def discr_rel_error(actx, discr, x, xref, p=None):
    from pytential import norm
    ref_norm = actx.to_numpy(norm(discr, xref, p=p))
    if ref_norm < 1.0e-14:
        ref_norm = 1

    diff_norm = actx.to_numpy(norm(discr, x - xref, p=p))
    return diff_norm / ref_norm
                stall_iterations=0,
                hard_failure=True)

        result = bind(places, sym.real(sym_result))(
                actx, sigma=actx.np.real(result.solution),
                **solution.context)
        ref_result = solution.exact(actx, density_discr)

        # }}}

        from pytential import norm
        h_max = actx.to_numpy(
                bind(places, sym.h_max(places.ambient_dim))(actx)
                )
        error = actx.to_numpy(
                norm(density_discr, result - ref_result, p=2)
                / norm(density_discr, ref_result, p=2)
                )

        eoc.add_data_point(h_max, error)
        logger.info("resolution %3d h_max %.5e rel_error %.5e",
                resolution, h_max, error)

        if not visualize:
            continue

        from meshmode.discretization.visualization import make_visualizer
        vis = make_visualizer(actx, density_discr, case.target_order)

        filename = f"beltrami_{case.name}_{solution.name}_{resolution}.vtu"
        vis.write_vtk_file(filename, [
Exemple #3
0
def test_sanity_balls(ctx_getter, src_file, dim, mesh_order,
        visualize=False):
    pytest.importorskip("pytential")

    logging.basicConfig(level=logging.INFO)

    ctx = ctx_getter()
    queue = cl.CommandQueue(ctx)

    from pytools.convergence import EOCRecorder
    vol_eoc_rec = EOCRecorder()
    surf_eoc_rec = EOCRecorder()

    # overkill
    quad_order = mesh_order

    from pytential import bind, sym

    for h in [0.2, 0.14, 0.1]:
        from meshmode.mesh.io import generate_gmsh, FileSource
        mesh = generate_gmsh(
                FileSource(src_file), dim, order=mesh_order,
                other_options=["-string", "Mesh.CharacteristicLengthMax = %g;" % h],
                force_ambient_dim=dim)

        logger.info("%d elements" % mesh.nelements)

        # {{{ discretizations and connections

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
                InterpolatoryQuadratureSimplexGroupFactory
        vol_discr = Discretization(ctx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(quad_order))

        from meshmode.discretization.connection import make_boundary_restriction
        bdry_mesh, bdry_discr, bdry_connection = make_boundary_restriction(
                queue, vol_discr,
                InterpolatoryQuadratureSimplexGroupFactory(quad_order))

        # }}}

        # {{{ visualizers

        from meshmode.discretization.visualization import make_visualizer
        vol_vis = make_visualizer(queue, vol_discr, 20)
        bdry_vis = make_visualizer(queue, bdry_discr, 20)

        # }}}

        from math import gamma
        true_surf = 2*np.pi**(dim/2)/gamma(dim/2)
        true_vol = true_surf/dim

        vol_x = vol_discr.nodes().with_queue(queue)

        vol_one = vol_x[0].copy()
        vol_one.fill(1)
        from pytential import norm, integral  # noqa

        comp_vol = integral(vol_discr, queue, vol_one)
        rel_vol_err = abs(true_vol - comp_vol) / true_vol
        vol_eoc_rec.add_data_point(h, rel_vol_err)
        print("VOL", true_vol, comp_vol)

        bdry_x = bdry_discr.nodes().with_queue(queue)

        bdry_one_exact = bdry_x[0].copy()
        bdry_one_exact.fill(1)

        bdry_one = bdry_connection(queue, vol_one).with_queue(queue)
        intp_err = norm(bdry_discr, queue, bdry_one-bdry_one_exact)
        assert intp_err < 1e-14

        comp_surf = integral(bdry_discr, queue, bdry_one)
        rel_surf_err = abs(true_surf - comp_surf) / true_surf
        surf_eoc_rec.add_data_point(h, rel_surf_err)
        print("SURF", true_surf, comp_surf)

        if visualize:
            vol_vis.write_vtk_file("volume-h=%g.vtu" % h, [
                ("f", vol_one),
                ("area_el", bind(vol_discr, sym.area_element())(queue)),
                ])
            bdry_vis.write_vtk_file("boundary-h=%g.vtu" % h, [("f", bdry_one)])

        # {{{ check normals point outward

        normal_outward_check = bind(bdry_discr,
                sym.normal() | sym.Nodes(),
                )(queue).as_scalar() > 0

        assert normal_outward_check.get().all(), normal_outward_check.get()

        # }}}

    print("---------------------------------")
    print("VOLUME")
    print("---------------------------------")
    print(vol_eoc_rec)
    assert vol_eoc_rec.order_estimate() >= mesh_order

    print("---------------------------------")
    print("SURFACE")
    print("---------------------------------")
    print(surf_eoc_rec)
    assert surf_eoc_rec.order_estimate() >= mesh_order
Exemple #4
0
 def scat_norm(f):
     return norm(qbx, queue, f, p=np.inf)
Exemple #5
0
 def scat_norm(f):
     return norm(qbx, queue, f, p=np.inf)
def test_ellipse_eigenvalues(ctx_factory,
                             ellipse_aspect,
                             mode_nr,
                             qbx_order,
                             force_direct,
                             visualize=False):
    logging.basicConfig(level=logging.INFO)

    print("ellipse_aspect: %s, mode_nr: %d, qbx_order: %d" %
          (ellipse_aspect, mode_nr, qbx_order))

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    target_order = 8

    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    from pytential.qbx import QBXLayerPotentialSource
    from pytools.convergence import EOCRecorder

    s_eoc_rec = EOCRecorder()
    d_eoc_rec = EOCRecorder()
    sp_eoc_rec = EOCRecorder()

    if ellipse_aspect != 1:
        nelements_values = [60, 100, 150, 200]
    else:
        nelements_values = [30, 70]

    # See
    #
    # [1] G. J. Rodin and O. Steinbach, "Boundary Element Preconditioners
    # for Problems Defined on Slender Domains", SIAM Journal on Scientific
    # Computing, Vol. 24, No. 4, pg. 1450, 2003.
    # https://dx.doi.org/10.1137/S1064827500372067

    for nelements in nelements_values:
        mesh = make_curve_mesh(partial(ellipse, ellipse_aspect),
                               np.linspace(0, 1, nelements + 1), target_order)

        fmm_order = 12
        if force_direct:
            fmm_order = False

        pre_density_discr = Discretization(
            actx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))
        qbx = QBXLayerPotentialSource(
            pre_density_discr,
            4 * target_order,
            qbx_order,
            fmm_order=fmm_order,
            _expansions_in_tree_have_extent=True,
        )
        places = GeometryCollection(qbx)

        density_discr = places.get_discretization(places.auto_source.geometry)
        from meshmode.dof_array import thaw, flatten
        nodes = thaw(actx, density_discr.nodes())

        if visualize:
            # plot geometry, centers, normals
            centers = bind(places, sym.expansion_centers(qbx.ambient_dim,
                                                         +1))(actx)
            normals = bind(places,
                           sym.normal(qbx.ambient_dim))(actx).as_vector(object)

            nodes_h = np.array(
                [actx.to_numpy(axis) for axis in flatten(nodes)])
            centers_h = np.array(
                [actx.to_numpy(axis) for axis in flatten(centers)])
            normals_h = np.array(
                [actx.to_numpy(axis) for axis in flatten(normals)])

            pt.plot(nodes_h[0], nodes_h[1], "x-")
            pt.plot(centers_h[0], centers_h[1], "o")
            pt.quiver(nodes_h[0], nodes_h[1], normals_h[0], normals_h[1])
            pt.gca().set_aspect("equal")
            pt.show()

        angle = actx.np.arctan2(nodes[1] * ellipse_aspect, nodes[0])

        ellipse_fraction = ((1 - ellipse_aspect) /
                            (1 + ellipse_aspect))**mode_nr

        # (2.6) in [1]
        J = actx.np.sqrt(  # noqa
            actx.np.sin(angle)**2 +
            (1 / ellipse_aspect)**2 * actx.np.cos(angle)**2)

        from sumpy.kernel import LaplaceKernel
        lap_knl = LaplaceKernel(2)

        # {{{ single layer

        sigma_sym = sym.var("sigma")
        s_sigma_op = sym.S(lap_knl, sigma_sym, qbx_forced_limit=+1)

        sigma = actx.np.cos(mode_nr * angle) / J
        s_sigma = bind(places, s_sigma_op)(actx, sigma=sigma)

        # SIGN BINGO! :)
        s_eigval = 1 / (2 * mode_nr) * (1 + (-1)**mode_nr * ellipse_fraction)

        # (2.12) in [1]
        s_sigma_ref = s_eigval * J * sigma

        if 0:
            #pt.plot(s_sigma.get(), label="result")
            #pt.plot(s_sigma_ref.get(), label="ref")
            pt.plot(actx.to_numpy(flatten(s_sigma_ref - s_sigma)), label="err")
            pt.legend()
            pt.show()

        h_max = bind(places, sym.h_max(qbx.ambient_dim))(actx)
        s_err = (norm(density_discr, s_sigma - s_sigma_ref) /
                 norm(density_discr, s_sigma_ref))
        s_eoc_rec.add_data_point(h_max, s_err)

        # }}}

        # {{{ double layer

        d_sigma_op = sym.D(lap_knl, sigma_sym, qbx_forced_limit="avg")

        sigma = actx.np.cos(mode_nr * angle)
        d_sigma = bind(places, d_sigma_op)(actx, sigma=sigma)

        # SIGN BINGO! :)
        d_eigval = -(-1)**mode_nr * 1 / 2 * ellipse_fraction

        d_sigma_ref = d_eigval * sigma

        if 0:
            pt.plot(actx.to_numpy(flatten(d_sigma)), label="result")
            pt.plot(actx.to_numpy(flatten(d_sigma_ref)), label="ref")
            pt.legend()
            pt.show()

        if ellipse_aspect == 1:
            d_ref_norm = norm(density_discr, sigma)
        else:
            d_ref_norm = norm(density_discr, d_sigma_ref)

        d_err = (norm(density_discr, d_sigma - d_sigma_ref) / d_ref_norm)
        d_eoc_rec.add_data_point(h_max, d_err)

        # }}}

        if ellipse_aspect == 1:
            # {{{ S'

            sp_sigma_op = sym.Sp(lap_knl,
                                 sym.var("sigma"),
                                 qbx_forced_limit="avg")

            sigma = actx.np.cos(mode_nr * angle)
            sp_sigma = bind(places, sp_sigma_op)(actx, sigma=sigma)
            sp_eigval = 0

            sp_sigma_ref = sp_eigval * sigma

            sp_err = (norm(density_discr, sp_sigma - sp_sigma_ref) /
                      norm(density_discr, sigma))
            sp_eoc_rec.add_data_point(h_max, sp_err)

            # }}}

    print("Errors for S:")
    print(s_eoc_rec)
    required_order = qbx_order + 1
    assert s_eoc_rec.order_estimate() > required_order - 1.5

    print("Errors for D:")
    print(d_eoc_rec)
    required_order = qbx_order
    assert d_eoc_rec.order_estimate() > required_order - 1.5

    if ellipse_aspect == 1:
        print("Errors for S':")
        print(sp_eoc_rec)
        required_order = qbx_order
        assert sp_eoc_rec.order_estimate() > required_order - 1.5
Exemple #7
0
def test_sanity_balls(ctx_getter, src_file, dim, mesh_order, visualize=False):
    pytest.importorskip("pytential")

    logging.basicConfig(level=logging.INFO)

    ctx = ctx_getter()
    queue = cl.CommandQueue(ctx)

    from pytools.convergence import EOCRecorder
    vol_eoc_rec = EOCRecorder()
    surf_eoc_rec = EOCRecorder()

    # overkill
    quad_order = mesh_order

    from pytential import bind, sym

    for h in [0.2, 0.14, 0.1]:
        from meshmode.mesh.io import generate_gmsh, FileSource
        mesh = generate_gmsh(FileSource(src_file),
                             dim,
                             order=mesh_order,
                             other_options=[
                                 "-string",
                                 "Mesh.CharacteristicLengthMax = %g;" % h
                             ],
                             force_ambient_dim=dim)

        logger.info("%d elements" % mesh.nelements)

        # {{{ discretizations and connections

        from meshmode.discretization import Discretization
        vol_discr = Discretization(
            ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(quad_order))

        from meshmode.discretization.connection import make_face_restriction
        bdry_connection = make_face_restriction(
            vol_discr, InterpolatoryQuadratureSimplexGroupFactory(quad_order),
            BTAG_ALL)
        bdry_discr = bdry_connection.to_discr

        # }}}

        # {{{ visualizers

        from meshmode.discretization.visualization import make_visualizer
        vol_vis = make_visualizer(queue, vol_discr, 20)
        bdry_vis = make_visualizer(queue, bdry_discr, 20)

        # }}}

        from math import gamma
        true_surf = 2 * np.pi**(dim / 2) / gamma(dim / 2)
        true_vol = true_surf / dim

        vol_x = vol_discr.nodes().with_queue(queue)

        vol_one = vol_x[0].copy()
        vol_one.fill(1)
        from pytential import norm, integral  # noqa

        comp_vol = integral(vol_discr, queue, vol_one)
        rel_vol_err = abs(true_vol - comp_vol) / true_vol
        vol_eoc_rec.add_data_point(h, rel_vol_err)
        print("VOL", true_vol, comp_vol)

        bdry_x = bdry_discr.nodes().with_queue(queue)

        bdry_one_exact = bdry_x[0].copy()
        bdry_one_exact.fill(1)

        bdry_one = bdry_connection(queue, vol_one).with_queue(queue)
        intp_err = norm(bdry_discr, queue, bdry_one - bdry_one_exact)
        assert intp_err < 1e-14

        comp_surf = integral(bdry_discr, queue, bdry_one)
        rel_surf_err = abs(true_surf - comp_surf) / true_surf
        surf_eoc_rec.add_data_point(h, rel_surf_err)
        print("SURF", true_surf, comp_surf)

        if visualize:
            vol_vis.write_vtk_file("volume-h=%g.vtu" % h, [
                ("f", vol_one),
                ("area_el", bind(vol_discr, sym.area_element())(queue)),
            ])
            bdry_vis.write_vtk_file("boundary-h=%g.vtu" % h, [("f", bdry_one)])

        # {{{ check normals point outward

        normal_outward_check = bind(
            bdry_discr,
            sym.normal(mesh.ambient_dim) | sym.nodes(mesh.ambient_dim),
        )(queue).as_scalar() > 0

        assert normal_outward_check.get().all(), normal_outward_check.get()

        # }}}

    print("---------------------------------")
    print("VOLUME")
    print("---------------------------------")
    print(vol_eoc_rec)
    assert vol_eoc_rec.order_estimate() >= mesh_order

    print("---------------------------------")
    print("SURFACE")
    print("---------------------------------")
    print(surf_eoc_rec)
    assert surf_eoc_rec.order_estimate() >= mesh_order
Exemple #8
0
def test_3d_jump_relations(ctx_factory, relation, visualize=False):
    # logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)

    if relation == "div_s":
        target_order = 3
    else:
        target_order = 4

    qbx_order = target_order

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for nel_factor in [6, 10, 14]:
        from meshmode.mesh.generation import generate_torus
        mesh = generate_torus(
                5, 2, order=target_order,
                n_outer=2*nel_factor, n_inner=nel_factor)

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
        pre_discr = Discretization(
                cl_ctx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(3))

        from pytential.qbx import QBXLayerPotentialSource
        qbx, _ = QBXLayerPotentialSource(
                pre_discr, fine_order=4*target_order,
                qbx_order=qbx_order,
                fmm_order=qbx_order + 5,
                fmm_backend="fmmlib"
                ).with_refinement()

        from sumpy.kernel import LaplaceKernel
        knl = LaplaceKernel(3)

        def nxcurlS(qbx_forced_limit):

            return sym.n_cross(sym.curl(sym.S(
                knl,
                sym.cse(sym.tangential_to_xyz(density_sym), "jxyz"),
                qbx_forced_limit=qbx_forced_limit)))

        x, y, z = qbx.density_discr.nodes().with_queue(queue)
        m = cl.clmath

        if relation == "nxcurls":
            density_sym = sym.make_sym_vector("density", 2)

            jump_identity_sym = (
                    nxcurlS(+1)
                    - (nxcurlS("avg") + 0.5*sym.tangential_to_xyz(density_sym)))

            # The tangential coordinate system is element-local, so we can't just
            # conjure up some globally smooth functions, interpret their values
            # in the tangential coordinate system, and be done. Instead, generate
            # an XYZ function and project it.
            density = bind(
                    qbx,
                    sym.xyz_to_tangential(sym.make_sym_vector("jxyz", 3)))(
                            queue,
                            jxyz=sym.make_obj_array([
                                m.cos(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.sin(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                ]))

        elif relation == "sp":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.Sp(knl, density_sym, qbx_forced_limit=+1)
                    - (sym.Sp(knl, density_sym, qbx_forced_limit="avg")
                        - 0.5*density_sym))

        elif relation == "div_s":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.div(sym.S(knl, sym.normal(3).as_vector()*density_sym,
                        qbx_forced_limit="avg"))
                    + sym.D(knl, density_sym, qbx_forced_limit="avg"))

        else:
            raise ValueError("unexpected value of 'relation': %s" % relation)

        bound_jump_identity = bind(qbx, jump_identity_sym)
        jump_identity = bound_jump_identity(queue, density=density)

        err = (
                norm(qbx, queue, jump_identity, np.inf)
                / norm(qbx, queue, density, np.inf))
        print("ERROR", qbx.h_max, err)

        eoc_rec.add_data_point(qbx.h_max, err)

        # {{{ visualization

        if visualize and relation == "nxcurls":
            nxcurlS_ext = bind(qbx, nxcurlS(+1))(queue, density=density)
            nxcurlS_avg = bind(qbx, nxcurlS("avg"))(queue, density=density)
            jtxyz = bind(qbx, sym.tangential_to_xyz(density_sym))(
                    queue, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, qbx.density_discr, target_order+3)

            bdry_normals = bind(qbx, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("jt", jtxyz),
                ("nxcurlS_ext", nxcurlS_ext),
                ("nxcurlS_avg", nxcurlS_avg),
                ("bdry_normals", bdry_normals),
                ])

        if visualize and relation == "sp":
            sp_ext = bind(qbx, sym.Sp(knl, density_sym, qbx_forced_limit=+1))(
                    queue, density=density)
            sp_avg = bind(qbx, sym.Sp(knl, density_sym, qbx_forced_limit="avg"))(
                    queue, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, qbx.density_discr, target_order+3)

            bdry_normals = bind(qbx, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("density", density),
                ("sp_ext", sp_ext),
                ("sp_avg", sp_avg),
                ("bdry_normals", bdry_normals),
                ])

        # }}}

    print(eoc_rec)

    assert eoc_rec.order_estimate() >= qbx_order - 1.5
 def rel_err(comp, ref):
     return actx.to_numpy(
         norm(density_discr, comp - ref) / norm(density_discr, ref))
Exemple #10
0
def get_green_error(geometry_getter,
                    lpot_kwargs,
                    center,
                    k,
                    vis_error_filename=None,
                    vis_order=TARGET_ORDER):
    """Return the Green identity error for a geometry.

    The density function for the Green error is the on-surface restriction of
    the potential due to a source charge in the exterior of the geometry, whose
    location is specified. The error is reported relative to the norm of the
    density.

    Params:

        geometry_getter: Geometry getter
        lpot_kwargs: Constructor args to QBXLayerPotentialSource
        center: Center of source charge used to obtain the constructed density
        k: Helmholtz parameter

    Returns:

        A dictionary containing Green identity errors in l^2 and l^infty norm
    """
    context = cl.create_some_context(interactive=False)
    queue = cl.CommandQueue(context)
    lpot_source = geometry_getter(queue, lpot_kwargs)

    d = lpot_source.ambient_dim

    u_sym = sym.var("u")
    dn_u_sym = sym.var("dn_u")

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    lap_k_sym = LaplaceKernel(d)
    if k == 0:
        k_sym = lap_k_sym
        knl_kwargs = {}
    else:
        k_sym = HelmholtzKernel(d)
        knl_kwargs = {"k": sym.var("k")}

    S_part = (sym.S(k_sym, dn_u_sym, qbx_forced_limit=-1, **knl_kwargs))

    D_part = (sym.D(k_sym, u_sym, qbx_forced_limit="avg", **knl_kwargs))

    sym_op = S_part - D_part - 0.5 * u_sym

    density_discr = lpot_source.density_discr

    # {{{ compute values of a solution to the PDE

    nodes_host = density_discr.nodes().get(queue)
    normal = bind(density_discr, sym.normal(d))(queue).as_vector(np.object)
    normal_host = [normal[j].get() for j in range(d)]

    if k != 0:
        if d == 2:
            angle = 0.3
            wave_vec = np.array([np.cos(angle), np.sin(angle)])
            u = np.exp(1j * k * np.tensordot(wave_vec, nodes_host, axes=1))
            grad_u = 1j * k * wave_vec[:, np.newaxis] * u
        else:
            diff = nodes_host - center[:, np.newaxis]
            r = la.norm(diff, axis=0)
            u = np.exp(1j * k * r) / r
            grad_u = diff * (1j * k * u / r - u / r**2)
    else:
        diff = nodes_host - center[:, np.newaxis]
        dist_squared = np.sum(diff**2, axis=0)
        dist = np.sqrt(dist_squared)
        if d == 2:
            u = np.log(dist)
            grad_u = diff / dist_squared
        elif d == 3:
            u = 1 / dist
            grad_u = -diff / dist**3
        else:
            assert False

    dn_u = 0
    for i in range(d):
        dn_u = dn_u + normal_host[i] * grad_u[i]

    # }}}

    u_dev = cl.array.to_device(queue, u)
    dn_u_dev = cl.array.to_device(queue, dn_u)
    grad_u_dev = cl.array.to_device(queue, grad_u)

    bound_op = bind(lpot_source, sym_op)
    error = bound_op(queue, u=u_dev, dn_u=dn_u_dev, grad_u=grad_u_dev, k=k)

    scaling_l2 = 1 / norm(density_discr, queue, u_dev, p=2)
    scaling_linf = 1 / norm(density_discr, queue, u_dev, p="inf")

    if vis_error_filename is not None:
        from meshmode.discretization.visualization import make_visualizer
        bdry_vis = make_visualizer(queue, lpot_source.density_discr, vis_order)
        bdry_vis.write_vtk_file(vis_error_filename, [
            ("green_zero", error),
            ("u_dev", u_dev),
        ])

    err_l2 = scaling_l2 * norm(density_discr, queue, error, p=2)
    err_linf = scaling_linf * norm(density_discr, queue, error, p="inf")

    return dict(err_l2=err_l2, err_linf=err_linf)
Exemple #11
0
def get_green_error(lpot_source, fmm_order, qbx_order, k=0, time=None):
    queue = cl.CommandQueue(lpot_source.cl_context)

    lpot_source = lpot_source.copy(
        qbx_order=qbx_order,
        fmm_level_to_order=(False if fmm_order is False else
                            lambda *args: fmm_order))

    d = lpot_source.ambient_dim

    u_sym = sym.var("u")
    dn_u_sym = sym.var("dn_u")

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    lap_k_sym = LaplaceKernel(d)
    if k == 0:
        k_sym = lap_k_sym
        knl_kwargs = {}
    else:
        k_sym = HelmholtzKernel(d)
        knl_kwargs = {"k": sym.var("k")}

    S_part = (  # noqa: N806
        sym.S(k_sym, dn_u_sym, qbx_forced_limit=-1, **knl_kwargs))

    D_part = (  # noqa: N806
        sym.D(k_sym, u_sym, qbx_forced_limit="avg", **knl_kwargs))

    density_discr = lpot_source.density_discr

    # {{{ compute values of a solution to the PDE

    nodes_host = density_discr.nodes().get(queue)
    normal = bind(density_discr, sym.normal(d))(queue).as_vector(np.object)
    normal_host = [normal[j].get() for j in range(d)]

    if k != 0:
        if d == 2:
            angle = 0.3
            wave_vec = np.array([np.cos(angle), np.sin(angle)])
            u = np.exp(1j * k * np.tensordot(wave_vec, nodes_host, axes=1))
            grad_u = 1j * k * wave_vec[:, np.newaxis] * u
        else:
            center = np.array([3, 1, 2])
            diff = nodes_host - center[:, np.newaxis]
            r = la.norm(diff, axis=0)
            u = np.exp(1j * k * r) / r
            grad_u = diff * (1j * k * u / r - u / r**2)
    else:
        center = np.array([2, 1, 2])[:d]
        diff = nodes_host - center[:, np.newaxis]
        dist_squared = np.sum(diff**2, axis=0)
        dist = np.sqrt(dist_squared)
        if d == 2:
            u = np.log(dist)
            grad_u = diff / dist_squared
        elif d == 3:
            u = 1 / dist
            grad_u = -diff / dist**3
        else:
            assert False

    dn_u = 0
    for i in range(d):
        dn_u = dn_u + normal_host[i] * grad_u[i]

    # }}}

    u_dev = cl.array.to_device(queue, u)
    dn_u_dev = cl.array.to_device(queue, dn_u)
    grad_u_dev = cl.array.to_device(queue, grad_u)

    bound_S_part = bind(lpot_source, S_part)  # noqa: N806
    bound_D_part = bind(lpot_source, D_part)  # noqa: N806

    from time import time as curr_time
    t_start = curr_time()
    S_result = bound_S_part(  # noqa: N806
        queue, u=u_dev, dn_u=dn_u_dev, grad_u=grad_u_dev, k=k)
    t_end = curr_time()
    if time is not None:
        time[0] = t_end - t_start

    D_result = bound_D_part(  # noqa: N806
        queue, u=u_dev, dn_u=dn_u_dev, grad_u=grad_u_dev, k=k)

    scaling_l2 = 1 / norm(density_discr, queue, u_dev, p=2)
    scaling_linf = 1 / norm(density_discr, queue, u_dev, p="inf")

    error = S_result - D_result - 0.5 * u_dev

    return (scaling_l2 * norm(density_discr, queue, error, p=2),
            scaling_linf * norm(density_discr, queue, error, p="inf"))
 def rel_err(comp, ref):
     return (
             norm(density_discr, queue, comp - ref)
             / norm(density_discr, queue, ref))
Exemple #13
0
 def obs_norm(f):
     return norm(obs_discr, queue, f, p=np.inf)
Exemple #14
0
def test_sanity_balls(actx_factory,
                      src_file,
                      dim,
                      mesh_order,
                      visualize=False):
    pytest.importorskip("pytential")

    logging.basicConfig(level=logging.INFO)
    actx = actx_factory()

    from pytools.convergence import EOCRecorder
    vol_eoc_rec = EOCRecorder()
    surf_eoc_rec = EOCRecorder()

    # overkill
    quad_order = mesh_order

    from pytential import bind, sym

    for h in [0.2, 0.1, 0.05]:
        from meshmode.mesh.io import generate_gmsh, FileSource
        mesh = generate_gmsh(FileSource(src_file),
                             dim,
                             order=mesh_order,
                             other_options=[
                                 "-string",
                                 "Mesh.CharacteristicLengthMax = %g;" % h
                             ],
                             force_ambient_dim=dim,
                             target_unit="MM")

        logger.info("%d elements", mesh.nelements)

        # {{{ discretizations and connections

        from meshmode.discretization import Discretization
        vol_discr = Discretization(
            actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(quad_order))

        from meshmode.discretization.connection import make_face_restriction
        bdry_connection = make_face_restriction(
            actx, vol_discr,
            InterpolatoryQuadratureSimplexGroupFactory(quad_order), BTAG_ALL)
        bdry_discr = bdry_connection.to_discr

        # }}}

        from math import gamma
        true_surf = 2 * np.pi**(dim / 2) / gamma(dim / 2)
        true_vol = true_surf / dim

        vol_x = thaw(vol_discr.nodes(), actx)

        vol_one = vol_x[0] * 0 + 1
        from pytential import norm, integral  # noqa

        comp_vol = integral(vol_discr, vol_one)
        rel_vol_err = abs(true_vol - comp_vol) / true_vol
        vol_eoc_rec.add_data_point(h, rel_vol_err)
        print("VOL", true_vol, comp_vol)

        bdry_x = thaw(bdry_discr.nodes(), actx)

        bdry_one_exact = bdry_x[0] * 0 + 1

        bdry_one = bdry_connection(vol_one)
        intp_err = norm(bdry_discr, bdry_one - bdry_one_exact)
        assert intp_err < 1e-14

        comp_surf = integral(bdry_discr, bdry_one)
        rel_surf_err = abs(true_surf - comp_surf) / true_surf
        surf_eoc_rec.add_data_point(h, rel_surf_err)
        print("SURF", true_surf, comp_surf)

        if visualize:
            from meshmode.discretization.visualization import make_visualizer
            vol_vis = make_visualizer(actx, vol_discr, 7)
            bdry_vis = make_visualizer(actx, bdry_discr, 7)

            name = src_file.split("-")[0]
            vol_vis.write_vtk_file(f"sanity_balls_volume_{name}_{h:g}.vtu", [
                ("f", vol_one),
                ("area_el",
                 bind(vol_discr,
                      sym.area_element(mesh.ambient_dim,
                                       mesh.ambient_dim))(actx)),
            ])

            bdry_vis.write_vtk_file(f"sanity_balls_boundary_{name}_{h:g}.vtu",
                                    [("f", bdry_one)])

        # {{{ check normals point outward

        normal_outward_check = bind(
            bdry_discr,
            sym.normal(mesh.ambient_dim) | sym.nodes(mesh.ambient_dim),
        )(actx).as_scalar()

        normal_outward_check = flatten_to_numpy(actx, normal_outward_check > 0)
        assert normal_outward_check.all(), normal_outward_check

        # }}}

    print("---------------------------------")
    print("VOLUME")
    print("---------------------------------")
    print(vol_eoc_rec)
    assert vol_eoc_rec.order_estimate() >= mesh_order

    print("---------------------------------")
    print("SURFACE")
    print("---------------------------------")
    print(surf_eoc_rec)
    assert surf_eoc_rec.order_estimate() >= mesh_order
Exemple #15
0
def test_ellipse_eigenvalues(ctx_getter, ellipse_aspect, mode_nr, qbx_order):
    logging.basicConfig(level=logging.INFO)

    print("ellipse_aspect: %s, mode_nr: %d, qbx_order: %d" % (
            ellipse_aspect, mode_nr, qbx_order))

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    target_order = 7

    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    from pytential.qbx import QBXLayerPotentialSource
    from pytools.convergence import EOCRecorder

    s_eoc_rec = EOCRecorder()
    d_eoc_rec = EOCRecorder()
    sp_eoc_rec = EOCRecorder()

    if ellipse_aspect != 1:
        nelements_values = [60, 100, 150, 200]
    else:
        nelements_values = [30, 70]

    # See
    #
    # [1] G. J. Rodin and O. Steinbach, "Boundary Element Preconditioners
    # for Problems Defined on Slender Domains", SIAM Journal on Scientific
    # Computing, Vol. 24, No. 4, pg. 1450, 2003.
    # http://dx.doi.org/10.1137/S1064827500372067

    for nelements in nelements_values:
        mesh = make_curve_mesh(partial(ellipse, ellipse_aspect),
                np.linspace(0, 1, nelements+1),
                target_order)

        fmm_order = qbx_order
        if fmm_order > 3:
            # FIXME: for now
            fmm_order = False

        density_discr = Discretization(
                cl_ctx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(target_order))
        qbx = QBXLayerPotentialSource(density_discr, 4*target_order,
                qbx_order, fmm_order=fmm_order)

        nodes = density_discr.nodes().with_queue(queue)

        if 0:
            # plot geometry, centers, normals
            centers = qbx.centers(density_discr, 1)
            nodes_h = nodes.get()
            centers_h = [centers[0].get(), centers[1].get()]
            pt.plot(nodes_h[0], nodes_h[1], "x-")
            pt.plot(centers_h[0], centers_h[1], "o")
            normal = bind(qbx, sym.normal())(queue).as_vector(np.object)
            pt.quiver(nodes_h[0], nodes_h[1],
                    normal[0].get(), normal[1].get())
            pt.gca().set_aspect("equal")
            pt.show()

        angle = cl.clmath.atan2(nodes[1]*ellipse_aspect, nodes[0])

        ellipse_fraction = ((1-ellipse_aspect)/(1+ellipse_aspect))**mode_nr

        # (2.6) in [1]
        J = cl.clmath.sqrt(  # noqa
                cl.clmath.sin(angle)**2
                + (1/ellipse_aspect)**2 * cl.clmath.cos(angle)**2)

        # {{{ single layer

        sigma = cl.clmath.cos(mode_nr*angle)/J

        s_sigma_op = bind(qbx, sym.S(0, sym.var("sigma")))
        s_sigma = s_sigma_op(queue=queue, sigma=sigma)

        # SIGN BINGO! :)
        s_eigval = 1/(2*mode_nr) * (1 + (-1)**mode_nr * ellipse_fraction)

        # (2.12) in [1]
        s_sigma_ref = s_eigval*J*sigma

        if 0:
            #pt.plot(s_sigma.get(), label="result")
            #pt.plot(s_sigma_ref.get(), label="ref")
            pt.plot((s_sigma_ref-s_sigma).get(), label="err")
            pt.legend()
            pt.show()

        s_err = (
                norm(density_discr, queue, s_sigma - s_sigma_ref)
                /
                norm(density_discr, queue, s_sigma_ref))
        s_eoc_rec.add_data_point(1/nelements, s_err)

        # }}}

        # {{{ double layer

        sigma = cl.clmath.cos(mode_nr*angle)

        d_sigma_op = bind(qbx, sym.D(0, sym.var("sigma")))
        d_sigma = d_sigma_op(queue=queue, sigma=sigma)

        # SIGN BINGO! :)
        d_eigval = -(-1)**mode_nr * 1/2*ellipse_fraction

        d_sigma_ref = d_eigval*sigma

        if 0:
            pt.plot(d_sigma.get(), label="result")
            pt.plot(d_sigma_ref.get(), label="ref")
            pt.legend()
            pt.show()

        if ellipse_aspect == 1:
            d_ref_norm = norm(density_discr, queue, sigma)
        else:
            d_ref_norm = norm(density_discr, queue, d_sigma_ref)

        d_err = (
                norm(density_discr, queue, d_sigma - d_sigma_ref)
                /
                d_ref_norm)
        d_eoc_rec.add_data_point(1/nelements, d_err)

        # }}}

        if ellipse_aspect == 1:
            # {{{ S'

            sigma = cl.clmath.cos(mode_nr*angle)

            sp_sigma_op = bind(qbx, sym.Sp(0, sym.var("sigma")))
            sp_sigma = sp_sigma_op(queue=queue, sigma=sigma)
            sp_eigval = 0

            sp_sigma_ref = sp_eigval*sigma

            sp_err = (
                    norm(density_discr, queue, sp_sigma - sp_sigma_ref)
                    /
                    norm(density_discr, queue, sigma))
            sp_eoc_rec.add_data_point(1/nelements, sp_err)

            # }}}

    print("Errors for S:")
    print(s_eoc_rec)
    required_order = qbx_order + 1
    assert s_eoc_rec.order_estimate() > required_order - 1.5

    print("Errors for D:")
    print(d_eoc_rec)
    required_order = qbx_order
    assert d_eoc_rec.order_estimate() > required_order - 1.5

    if ellipse_aspect == 1:
        print("Errors for S':")
        print(sp_eoc_rec)
        required_order = qbx_order
        assert sp_eoc_rec.order_estimate() > required_order - 1.5
Exemple #16
0
def test_3d_jump_relations(ctx_factory, relation, visualize=False):
    # logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    if relation == "div_s":
        target_order = 3
    else:
        target_order = 4

    qbx_order = target_order

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for nel_factor in [6, 10, 14]:
        from meshmode.mesh.generation import generate_torus
        mesh = generate_torus(
                5, 2, order=target_order,
                n_major=2*nel_factor, n_minor=nel_factor)

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
        pre_discr = Discretization(
                actx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(3))

        from pytential.qbx import QBXLayerPotentialSource
        qbx = QBXLayerPotentialSource(
                pre_discr, fine_order=4*target_order,
                qbx_order=qbx_order,
                fmm_order=qbx_order + 5,
                fmm_backend="fmmlib"
                )

        places = GeometryCollection(qbx)
        density_discr = places.get_discretization(places.auto_source.geometry)

        from sumpy.kernel import LaplaceKernel
        knl = LaplaceKernel(3)

        def nxcurlS(qbx_forced_limit):

            return sym.n_cross(sym.curl(sym.S(
                knl,
                sym.cse(sym.tangential_to_xyz(density_sym), "jxyz"),
                qbx_forced_limit=qbx_forced_limit)))

        from meshmode.dof_array import thaw
        x, y, z = thaw(actx, density_discr.nodes())
        m = actx.np

        if relation == "nxcurls":
            density_sym = sym.make_sym_vector("density", 2)

            jump_identity_sym = (
                    nxcurlS(+1)
                    - (nxcurlS("avg") + 0.5*sym.tangential_to_xyz(density_sym)))

            # The tangential coordinate system is element-local, so we can't just
            # conjure up some globally smooth functions, interpret their values
            # in the tangential coordinate system, and be done. Instead, generate
            # an XYZ function and project it.
            density = bind(places,
                    sym.xyz_to_tangential(sym.make_sym_vector("jxyz", 3)))(
                            actx,
                            jxyz=sym.make_obj_array([
                                m.cos(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.sin(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                ]))

        elif relation == "sp":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.Sp(knl, density_sym, qbx_forced_limit=+1)
                    - (sym.Sp(knl, density_sym, qbx_forced_limit="avg")
                        - 0.5*density_sym))

        elif relation == "div_s":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.div(sym.S(knl, sym.normal(3).as_vector()*density_sym,
                        qbx_forced_limit="avg"))
                    + sym.D(knl, density_sym, qbx_forced_limit="avg"))

        else:
            raise ValueError("unexpected value of 'relation': %s" % relation)

        bound_jump_identity = bind(places, jump_identity_sym)
        jump_identity = bound_jump_identity(actx, density=density)

        h_max = bind(places, sym.h_max(qbx.ambient_dim))(actx)
        err = (
                norm(density_discr, jump_identity, np.inf)
                / norm(density_discr, density, np.inf))
        print("ERROR", h_max, err)

        eoc_rec.add_data_point(h_max, err)

        # {{{ visualization

        if visualize and relation == "nxcurls":
            nxcurlS_ext = bind(places, nxcurlS(+1))(actx, density=density)
            nxcurlS_avg = bind(places, nxcurlS("avg"))(actx, density=density)
            jtxyz = bind(places, sym.tangential_to_xyz(density_sym))(
                    actx, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(actx, qbx.density_discr, target_order+3)

            bdry_normals = bind(places, sym.normal(3))(actx)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("jt", jtxyz),
                ("nxcurlS_ext", nxcurlS_ext),
                ("nxcurlS_avg", nxcurlS_avg),
                ("bdry_normals", bdry_normals),
                ])

        if visualize and relation == "sp":
            op = sym.Sp(knl, density_sym, qbx_forced_limit=+1)
            sp_ext = bind(places, op)(actx, density=density)
            op = sym.Sp(knl, density_sym, qbx_forced_limit="avg")
            sp_avg = bind(places, op)(actx, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(actx, qbx.density_discr, target_order+3)

            bdry_normals = bind(places,
                    sym.normal(3))(actx).as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("density", density),
                ("sp_ext", sp_ext),
                ("sp_avg", sp_avg),
                ("bdry_normals", bdry_normals),
                ])

        # }}}

    print(eoc_rec)

    assert eoc_rec.order_estimate() >= qbx_order - 1.5
Exemple #17
0
def test_identities(ctx_getter, zero_op_name, curve_name, curve_f, qbx_order, k):
    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    target_order = 7

    u_sym = sym.var("u")
    grad_u_sym = sym.VectorVariable("grad_u")
    dn_u_sym = sym.var("dn_u")

    if k == 0:
        k_sym = 0
    else:
        k_sym = "k"

    zero_op_table = {
            "green":
            sym.S(k_sym, dn_u_sym) - sym.D(k_sym, u_sym) - 0.5*u_sym,

            "green_grad":
            d1.nabla * d1(sym.S(k_sym, dn_u_sym))
            - d2.nabla * d2(sym.D(k_sym, u_sym))
            - 0.5*grad_u_sym,

            # only for k==0:
            "zero_calderon":
            -sym.Dp(0, sym.S(0, u_sym))
            - 0.25*u_sym + sym.Sp(0, sym.Sp(0, u_sym))
            }
    order_table = {
            "green": qbx_order,
            "green_grad": qbx_order-1,
            "zero_calderon": qbx_order-1,
            }

    zero_op = zero_op_table[zero_op_name]

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for nelements in [30, 50, 70]:
        mesh = make_curve_mesh(curve_f,
                np.linspace(0, 1, nelements+1),
                target_order)

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
                InterpolatoryQuadratureSimplexGroupFactory
        from pytential.qbx import QBXLayerPotentialSource
        density_discr = Discretization(
                cl_ctx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(target_order))

        qbx = QBXLayerPotentialSource(density_discr, 4*target_order,
                qbx_order,
                # Don't use FMM for now
                fmm_order=False)

        # {{{ compute values of a solution to the PDE

        nodes_host = density_discr.nodes().get(queue)
        normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
        normal_host = [normal[0].get(), normal[1].get()]

        if k != 0:
            angle = 0.3
            wave_vec = np.array([np.cos(angle), np.sin(angle)])
            u = np.exp(1j*k*np.tensordot(wave_vec, nodes_host, axes=1))
            grad_u = 1j*k*wave_vec[:, np.newaxis]*u
        else:
            center = np.array([3, 1])
            diff = nodes_host - center[:, np.newaxis]
            dist_squared = np.sum(diff**2, axis=0)
            dist = np.sqrt(dist_squared)
            u = np.log(dist)
            grad_u = diff/dist_squared

        dn_u = normal_host[0]*grad_u[0] + normal_host[1]*grad_u[1]

        # }}}

        u_dev = cl.array.to_device(queue, u)
        dn_u_dev = cl.array.to_device(queue, dn_u)
        grad_u_dev = cl.array.to_device(queue, grad_u)

        key = (qbx_order, curve_name, nelements, zero_op_name)

        bound_op = bind(qbx, zero_op)
        error = bound_op(
                queue, u=u_dev, dn_u=dn_u_dev, grad_u=grad_u_dev, k=k)
        if 0:
            pt.plot(error)
            pt.show()

        l2_error_norm = norm(density_discr, queue, error)
        print(key, l2_error_norm)

        eoc_rec.add_data_point(1/nelements, l2_error_norm)

    print(eoc_rec)
    tgt_order = order_table[zero_op_name]
    assert eoc_rec.order_estimate() > tgt_order - 1.3
Exemple #18
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    ctx = cl.create_some_context()
    queue = cl.CommandQueue(ctx)

    mesh = generate_gmsh(
            FileSource("circle.step"), 2, order=mesh_order,
            force_ambient_dim=2,
            other_options=["-string", "Mesh.CharacteristicLengthMax = %g;" % h]
            )

    logger.info("%d elements" % mesh.nelements)

    # {{{ discretizations and connections

    vol_discr = Discretization(ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(vol_quad_order))
    ovsmp_vol_discr = Discretization(ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(vol_ovsmp_quad_order))

    from meshmode.discretization.connection import (
            make_boundary_restriction, make_same_mesh_connection)
    bdry_mesh, bdry_discr, bdry_connection = make_boundary_restriction(
            queue, vol_discr,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    vol_to_ovsmp_vol = make_same_mesh_connection(
            queue, ovsmp_vol_discr, vol_discr)

    # }}}

    # {{{ visualizers

    vol_vis = make_visualizer(queue, vol_discr, 20)
    bdry_vis = make_visualizer(queue, bdry_discr, 20)

    # }}}

    vol_x = vol_discr.nodes().with_queue(queue)
    ovsmp_vol_x = ovsmp_vol_discr.nodes().with_queue(queue)

    rhs = rhs_func(vol_x[0], vol_x[1])
    poisson_true_sol = sol_func(vol_x[0], vol_x[1])

    vol_vis.write_vtk_file("volume.vtu", [("f", rhs)])

    bdry_normals = bind(bdry_discr, p.normal())(queue).as_vector(dtype=object)
    bdry_vis.write_vtk_file("boundary.vtu", [
        ("normals", bdry_normals)
        ])

    bdry_nodes = bdry_discr.nodes().with_queue(queue)
    bdry_f = rhs_func(bdry_nodes[0], bdry_nodes[1])
    bdry_f_2 = bdry_connection(queue, rhs)

    bdry_vis.write_vtk_file("y.vtu", [("f", bdry_f_2)])

    if 0:
        vol_vis.show_scalar_in_mayavi(rhs, do_show=False)
        bdry_vis.show_scalar_in_mayavi(bdry_f - bdry_f_2, line_width=10,
                do_show=False)

        import mayavi.mlab as mlab
        mlab.colorbar()
        mlab.show()

    # {{{ compute volume potential

    from sumpy.qbx import LayerPotential
    from sumpy.expansion.local import LineTaylorLocalExpansion

    def get_kernel():
        from sumpy.symbolic import pymbolic_real_norm_2
        from pymbolic.primitives import (make_sym_vector, Variable as var)

        r = pymbolic_real_norm_2(make_sym_vector("d", 3))
        expr = var("log")(r)
        scaling = 1/(2*var("pi"))

        from sumpy.kernel import ExpressionKernel
        return ExpressionKernel(
                dim=3,
                expression=expr,
                scaling=scaling,
                is_complex_valued=False)

    laplace_2d_in_3d_kernel = get_kernel()

    layer_pot = LayerPotential(ctx, [
        LineTaylorLocalExpansion(laplace_2d_in_3d_kernel,
            order=vol_qbx_order)])

    targets = cl.array.zeros(queue, (3,) + vol_x.shape[1:], vol_x.dtype)
    targets[:2] = vol_x

    center_dist = np.min(
            cl.clmath.sqrt(
                bind(vol_discr, p.area_element())(queue)).get())

    centers = make_obj_array([ci.copy().reshape(vol_discr.nnodes) for ci in targets])
    centers[2][:] = center_dist

    sources = cl.array.zeros(queue, (3,) + ovsmp_vol_x.shape[1:], ovsmp_vol_x.dtype)
    sources[:2] = ovsmp_vol_x

    ovsmp_rhs = vol_to_ovsmp_vol(queue, rhs)
    ovsmp_vol_weights = bind(ovsmp_vol_discr, p.area_element() * p.QWeight())(queue)

    evt, (vol_pot,) = layer_pot(
            queue,
            targets=targets.reshape(3, vol_discr.nnodes),
            centers=centers,
            sources=sources.reshape(3, ovsmp_vol_discr.nnodes),
            strengths=(
                (ovsmp_vol_weights*ovsmp_rhs).reshape(ovsmp_vol_discr.nnodes),)
            )

    vol_pot_bdry = bdry_connection(queue, vol_pot)

    # }}}

    # {{{ solve bvp

    from sumpy.kernel import LaplaceKernel
    from pytential.symbolic.pde.scalar import DirichletOperator
    op = DirichletOperator(LaplaceKernel(2), -1, use_l2_weighting=True)

    sym_sigma = sym.var("sigma")
    op_sigma = op.operator(sym_sigma)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            bdry_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            )

    bound_op = bind(qbx, op_sigma)

    poisson_bc = poisson_bc_func(bdry_nodes[0], bdry_nodes[1])
    bvp_bc = poisson_bc - vol_pot_bdry
    bdry_f = rhs_func(bdry_nodes[0], bdry_nodes[1])

    bvp_rhs = bind(bdry_discr, op.prepare_rhs(sym.var("bc")))(queue, bc=bvp_bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "sigma"),
            bvp_rhs, tol=1e-14, progress=True,
            hard_failure=False)

    sigma = gmres_result.solution
    print("gmres state:", gmres_result.state)

    # }}}

    bvp_sol = bind(
            (qbx, vol_discr),
            op.representation(sym_sigma))(queue, sigma=sigma)

    poisson_sol = bvp_sol + vol_pot
    poisson_err = poisson_sol-poisson_true_sol

    rel_err = (
            norm(vol_discr, queue, poisson_err)
            /
            norm(vol_discr, queue, poisson_true_sol))
    bdry_vis.write_vtk_file("poisson-boundary.vtu", [
        ("vol_pot_bdry", vol_pot_bdry),
        ("sigma", sigma),
        ])

    vol_vis.write_vtk_file("poisson-volume.vtu", [
        ("bvp_sol", bvp_sol),
        ("poisson_sol", poisson_sol),
        ("poisson_true_sol", poisson_true_sol),
        ("poisson_err", poisson_err),
        ("vol_pot", vol_pot),
        ("rhs", rhs),
        ])

    print("h = %s" % h)
    print("mesh_order = %s" % mesh_order)
    print("vol_quad_order = %s" % vol_quad_order)
    print("vol_ovsmp_quad_order = %s" % vol_ovsmp_quad_order)
    print("bdry_quad_order = %s" % bdry_quad_order)
    print("bdry_ovsmp_quad_order = %s" % bdry_ovsmp_quad_order)
    print("qbx_order = %s" % qbx_order)
    print("vol_qbx_order = %s" % vol_qbx_order)
    print("fmm_order = %s" % fmm_order)
    print()
    print("rel err: %g" % rel_err)
Exemple #19
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    ctx = cl.create_some_context()
    queue = cl.CommandQueue(ctx)

    if 1:
        ext = 0.5
        mesh = generate_regular_rect_mesh(a=(-ext / 2, -ext / 2),
                                          b=(ext / 2, ext / 2),
                                          n=(int(ext / h), int(ext / h)))
    else:
        mesh = generate_gmsh(FileSource("circle.step"),
                             2,
                             order=mesh_order,
                             force_ambient_dim=2,
                             other_options=[
                                 "-string",
                                 "Mesh.CharacteristicLengthMax = %g;" % h
                             ])

    logger.info("%d elements" % mesh.nelements)

    # {{{ discretizations and connections

    vol_discr = Discretization(
        ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(vol_quad_order))
    ovsmp_vol_discr = Discretization(
        ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(vol_ovsmp_quad_order))

    from meshmode.mesh import BTAG_ALL
    from meshmode.discretization.connection import (make_face_restriction,
                                                    make_same_mesh_connection)
    bdry_connection = make_face_restriction(
        vol_discr, InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order),
        BTAG_ALL)

    bdry_discr = bdry_connection.to_discr

    vol_to_ovsmp_vol = make_same_mesh_connection(ovsmp_vol_discr, vol_discr)

    # }}}

    # {{{ visualizers

    vol_vis = make_visualizer(queue, vol_discr, 20)
    bdry_vis = make_visualizer(queue, bdry_discr, 20)

    # }}}

    vol_x = vol_discr.nodes().with_queue(queue)
    ovsmp_vol_x = ovsmp_vol_discr.nodes().with_queue(queue)

    rhs = rhs_func(vol_x[0], vol_x[1])
    poisson_true_sol = sol_func(vol_x[0], vol_x[1])

    vol_vis.write_vtk_file("volume.vtu", [("f", rhs)])

    bdry_normals = bind(bdry_discr, p.normal(
        mesh.ambient_dim))(queue).as_vector(dtype=object)
    bdry_vis.write_vtk_file("boundary.vtu", [("normals", bdry_normals)])

    bdry_nodes = bdry_discr.nodes().with_queue(queue)
    bdry_f = rhs_func(bdry_nodes[0], bdry_nodes[1])
    bdry_f_2 = bdry_connection(queue, rhs)

    bdry_vis.write_vtk_file("y.vtu", [("f", bdry_f_2)])

    if 0:
        vol_vis.show_scalar_in_mayavi(rhs, do_show=False)
        bdry_vis.show_scalar_in_mayavi(bdry_f - bdry_f_2,
                                       line_width=10,
                                       do_show=False)

        import mayavi.mlab as mlab
        mlab.colorbar()
        mlab.show()

    # {{{ compute volume potential

    from sumpy.qbx import LayerPotential
    from sumpy.expansion.local import LineTaylorLocalExpansion

    def get_kernel():
        from sumpy.symbolic import pymbolic_real_norm_2
        from pymbolic.primitives import make_sym_vector
        from pymbolic import var

        d = make_sym_vector("d", 3)
        r = pymbolic_real_norm_2(d[:-1])
        # r3d = pymbolic_real_norm_2(d)
        #expr = var("log")(r3d)

        log = var("log")
        sqrt = var("sqrt")

        a = d[-1]

        expr = log(r)
        expr = log(sqrt(r**2 + a**2))
        expr = log(sqrt(r + a**2))
        #expr = log(sqrt(r**2 + a**2))-a**2/2/(r**2+a**2)
        #expr = 2*log(sqrt(r**2 + a**2))

        scaling = 1 / (2 * var("pi"))

        from sumpy.kernel import ExpressionKernel
        return ExpressionKernel(dim=3,
                                expression=expr,
                                global_scaling_const=scaling,
                                is_complex_valued=False)

    laplace_2d_in_3d_kernel = get_kernel()

    layer_pot = LayerPotential(
        ctx, [LineTaylorLocalExpansion(laplace_2d_in_3d_kernel, order=0)])

    targets = cl.array.zeros(queue, (3, ) + vol_x.shape[1:], vol_x.dtype)
    targets[:2] = vol_x

    center_dist = 0.125 * np.min(
        cl.clmath.sqrt(
            bind(vol_discr, p.area_element(mesh.ambient_dim,
                                           mesh.dim))(queue)).get())

    centers = make_obj_array(
        [ci.copy().reshape(vol_discr.nnodes) for ci in targets])
    centers[2][:] = center_dist

    print(center_dist)

    sources = cl.array.zeros(queue, (3, ) + ovsmp_vol_x.shape[1:],
                             ovsmp_vol_x.dtype)
    sources[:2] = ovsmp_vol_x

    ovsmp_rhs = vol_to_ovsmp_vol(queue, rhs)
    ovsmp_vol_weights = bind(
        ovsmp_vol_discr,
        p.area_element(mesh.ambient_dim, mesh.dim) * p.QWeight())(queue)

    print("volume: %d source nodes, %d target nodes" %
          (ovsmp_vol_discr.nnodes, vol_discr.nnodes))
    evt, (vol_pot, ) = layer_pot(
        queue,
        targets=targets.reshape(3, vol_discr.nnodes),
        centers=centers,
        sources=sources.reshape(3, ovsmp_vol_discr.nnodes),
        strengths=((ovsmp_vol_weights * ovsmp_rhs).reshape(
            ovsmp_vol_discr.nnodes), ),
        expansion_radii=np.zeros(vol_discr.nnodes),
    )

    vol_pot_bdry = bdry_connection(queue, vol_pot)

    # }}}

    # {{{ solve bvp

    from sumpy.kernel import LaplaceKernel
    from pytential.symbolic.pde.scalar import DirichletOperator
    op = DirichletOperator(LaplaceKernel(2), -1, use_l2_weighting=True)

    sym_sigma = sym.var("sigma")
    op_sigma = op.operator(sym_sigma)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
        bdry_discr,
        fine_order=bdry_ovsmp_quad_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
    )

    bound_op = bind(qbx, op_sigma)

    poisson_bc = poisson_bc_func(bdry_nodes[0], bdry_nodes[1])
    bvp_bc = poisson_bc - vol_pot_bdry
    bdry_f = rhs_func(bdry_nodes[0], bdry_nodes[1])

    bvp_rhs = bind(bdry_discr, op.prepare_rhs(sym.var("bc")))(queue, bc=bvp_bc)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(queue, "sigma", dtype=np.float64),
                         bvp_rhs,
                         tol=1e-14,
                         progress=True,
                         hard_failure=False)

    sigma = gmres_result.solution
    print("gmres state:", gmres_result.state)

    # }}}

    bvp_sol = bind((qbx, vol_discr), op.representation(sym_sigma))(queue,
                                                                   sigma=sigma)

    poisson_sol = bvp_sol + vol_pot
    poisson_err = poisson_sol - poisson_true_sol

    rel_err = (norm(vol_discr, queue, poisson_err) /
               norm(vol_discr, queue, poisson_true_sol))
    bdry_vis.write_vtk_file("poisson-boundary.vtu", [
        ("vol_pot_bdry", vol_pot_bdry),
        ("sigma", sigma),
    ])

    vol_vis.write_vtk_file("poisson-volume.vtu", [
        ("bvp_sol", bvp_sol),
        ("poisson_sol", poisson_sol),
        ("poisson_true_sol", poisson_true_sol),
        ("poisson_err", poisson_err),
        ("vol_pot", vol_pot),
        ("rhs", rhs),
    ])

    print("h = %s" % h)
    print("mesh_order = %s" % mesh_order)
    print("vol_quad_order = %s" % vol_quad_order)
    print("vol_ovsmp_quad_order = %s" % vol_ovsmp_quad_order)
    print("bdry_quad_order = %s" % bdry_quad_order)
    print("bdry_ovsmp_quad_order = %s" % bdry_ovsmp_quad_order)
    print("qbx_order = %s" % qbx_order)
    #print("vol_qbx_order = %s" % vol_qbx_order)
    print("fmm_order = %s" % fmm_order)
    print()
    print("rel err: %g" % rel_err)
 def rel_err(comp, ref):
     return (norm(density_discr, comp - ref) / norm(density_discr, ref))
Exemple #21
0
def test_3d_jump_relations(actx_factory, relation, visualize=False):
    # logging.basicConfig(level=logging.INFO)
    actx = actx_factory()

    if relation == "div_s":
        target_order = 3
    else:
        target_order = 4

    qbx_order = target_order

    if relation == "sp":
        resolutions = [10, 14, 18]
    else:
        resolutions = [6, 10, 14]

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for nel_factor in resolutions:
        from meshmode.mesh.generation import generate_torus
        mesh = generate_torus(
            5,
            2,
            n_major=2 * nel_factor,
            n_minor=nel_factor,
            order=target_order,
        )

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
        pre_density_discr = Discretization(
            actx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))

        from pytential.qbx import QBXLayerPotentialSource
        qbx = QBXLayerPotentialSource(pre_density_discr,
                                      fine_order=5 * target_order,
                                      qbx_order=qbx_order,
                                      fmm_order=qbx_order + 5,
                                      fmm_backend="fmmlib")

        places = GeometryCollection(qbx)
        density_discr = places.get_discretization(places.auto_source.geometry)

        from sumpy.kernel import LaplaceKernel
        knl = LaplaceKernel(places.ambient_dim)

        def nxcurlS(qbx_forced_limit):
            sigma_sym = sym.cse(sym.tangential_to_xyz(density_sym), "jxyz")
            return sym.n_cross(
                sym.curl(
                    sym.S(knl, sigma_sym, qbx_forced_limit=qbx_forced_limit)))

        x, y, z = thaw(density_discr.nodes(), actx)
        if relation == "nxcurls":
            density_sym = sym.make_sym_vector("density", 2)
            jump_identity_sym = (nxcurlS(+1) - nxcurlS("avg") -
                                 0.5 * sym.tangential_to_xyz(density_sym))

            # The tangential coordinate system is element-local, so we can't just
            # conjure up some globally smooth functions, interpret their values
            # in the tangential coordinate system, and be done. Instead, generate
            # an XYZ function and project it.
            jxyz = sym.make_obj_array([
                actx.np.cos(0.5 * x) * actx.np.cos(0.5 * y) *
                actx.np.cos(0.5 * z),
                actx.np.sin(0.5 * x) * actx.np.cos(0.5 * y) *
                actx.np.sin(0.5 * z),
                actx.np.sin(0.5 * x) * actx.np.cos(0.5 * y) *
                actx.np.cos(0.5 * z),
            ])
            density = bind(
                places,
                sym.xyz_to_tangential(sym.make_sym_vector("jxyz",
                                                          3)))(actx, jxyz=jxyz)

        elif relation == "sp":
            density_sym = sym.var("density")
            jump_identity_sym = (
                0.5 * density_sym +
                sym.Sp(knl, density_sym, qbx_forced_limit=+1) -
                sym.Sp(knl, density_sym, qbx_forced_limit="avg"))

            density = actx.np.cos(2 * x) * actx.np.cos(2 * y) * actx.np.cos(z)

        elif relation == "div_s":
            density_sym = sym.var("density")
            sigma_sym = sym.normal(
                places.ambient_dim).as_vector() * density_sym
            jump_identity_sym = (
                sym.div(sym.S(knl, sigma_sym, qbx_forced_limit="avg")) +
                sym.D(knl, density_sym, qbx_forced_limit="avg"))

            density = actx.np.cos(2 * x) * actx.np.cos(2 * y) * actx.np.cos(z)

        else:
            raise ValueError(f"unexpected value of 'relation': '{relation}'")

        bound_jump_identity = bind(places, jump_identity_sym)
        jump_identity = bound_jump_identity(actx, density=density)

        h_max = actx.to_numpy(
            bind(places, sym.h_max(places.ambient_dim))(actx))
        err = actx.to_numpy(
            norm(density_discr, jump_identity, np.inf) /
            norm(density_discr, density, np.inf))
        eoc_rec.add_data_point(h_max, err)

        logging.info("error: nel %d h_max %.5e %.5e", nel_factor, h_max, err)

        # {{{ visualization

        if not visualize:
            continue

        from meshmode.discretization.visualization import make_visualizer
        vis = make_visualizer(actx, density_discr, target_order)
        normals = bind(places,
                       sym.normal(places.ambient_dim).as_vector())(actx)
        error = actx.np.log10(actx.np.abs(jump_identity) + 1.0e-15)

        if relation == "nxcurls":
            nxcurlS_ext = bind(places, nxcurlS(+1))(actx, density=density)
            nxcurlS_avg = bind(places, nxcurlS("avg"))(actx, density=density)
            jtxyz = bind(places,
                         sym.tangential_to_xyz(density_sym))(actx,
                                                             density=density)

            vis.write_vtk_file(f"source-nxcurls-{nel_factor:03d}.vtu", [
                ("jt", jtxyz),
                ("nxcurlS_ext", nxcurlS_ext),
                ("nxcurlS_avg", nxcurlS_avg),
                ("bdry_normals", normals),
                ("error", error),
            ])

        elif relation == "sp":
            op = sym.Sp(knl, density_sym, qbx_forced_limit=+1)
            sp_ext = bind(places, op)(actx, density=density)
            op = sym.Sp(knl, density_sym, qbx_forced_limit="avg")
            sp_avg = bind(places, op)(actx, density=density)

            vis.write_vtk_file(f"source-sp-{nel_factor:03d}.vtu", [
                ("density", density),
                ("sp_ext", sp_ext),
                ("sp_avg", sp_avg),
                ("bdry_normals", normals),
                ("error", error),
            ])

        elif relation == "div_s":
            vis.write_vtk_file(f"source-div-{nel_factor:03d}.vtu", [
                ("density", density),
                ("bdry_normals", normals),
                ("error", error),
            ])

        # }}}

    logger.info("\n%s", str(eoc_rec))
    assert eoc_rec.order_estimate() >= qbx_order - 1.5
Exemple #22
0
 def scat_norm(f):
     return norm(density_discr, f, p=np.inf)
        grad_u_dev = cl.array.to_device(queue, grad_u)

        key = (case.qbx_order, case.geometry.mesh_name, resolution,
               case.expr.zero_op_name)

        bound_op = bind(qbx, case.expr.get_zero_op(k_sym, **knl_kwargs))
        error = bound_op(queue,
                         u=u_dev,
                         dn_u=dn_u_dev,
                         grad_u=grad_u_dev,
                         k=case.k)
        if 0:
            pt.plot(error)
            pt.show()

        linf_error_norm = norm(density_discr, queue, error, p=np.inf)
        print("--->", key, linf_error_norm)

        h_max = bind(qbx, sym.h_max(qbx.ambient_dim))(queue)
        eoc_rec.add_data_point(h_max, linf_error_norm)

        if visualize:
            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, density_discr, target_order)

            bdry_normals = bind(density_discr, sym.normal(mesh.ambient_dim))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % resolution, [
                ("u", u_dev),
                ("bdry_normals", bdry_normals),
Exemple #24
0
 def obs_norm(f):
     return norm(obs_discr, queue, f, p=np.inf)
def test_identity_convergence(ctx_getter,  case, visualize=False):
    logging.basicConfig(level=logging.INFO)

    case.check()

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    target_order = 8

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for resolution in (
            getattr(case, "resolutions", None)
            or case.geometry.resolutions
            ):
        mesh = case.geometry.get_mesh(resolution, target_order)
        if mesh is None:
            break

        d = mesh.ambient_dim
        k = case.k

        lap_k_sym = LaplaceKernel(d)
        if k == 0:
            k_sym = lap_k_sym
            knl_kwargs = {}
        else:
            k_sym = HelmholtzKernel(d)
            knl_kwargs = {"k": sym.var("k")}

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
                InterpolatoryQuadratureSimplexGroupFactory
        from pytential.qbx import QBXLayerPotentialSource
        pre_density_discr = Discretization(
                cl_ctx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(target_order))

        refiner_extra_kwargs = {}

        if case.k != 0:
            refiner_extra_kwargs["kernel_length_scale"] = 5/case.k

        qbx, _ = QBXLayerPotentialSource(
                pre_density_discr, 4*target_order,
                case.qbx_order,
                fmm_order=case.fmm_order,
                fmm_backend=case.fmm_backend,
                _expansions_in_tree_have_extent=True,
                _expansion_stick_out_factor=getattr(
                    case, "_expansion_stick_out_factor", 0),
                ).with_refinement(**refiner_extra_kwargs)

        density_discr = qbx.density_discr

        # {{{ compute values of a solution to the PDE

        nodes_host = density_discr.nodes().get(queue)
        normal = bind(density_discr, sym.normal(d))(queue).as_vector(np.object)
        normal_host = [normal[j].get() for j in range(d)]

        if k != 0:
            if d == 2:
                angle = 0.3
                wave_vec = np.array([np.cos(angle), np.sin(angle)])
                u = np.exp(1j*k*np.tensordot(wave_vec, nodes_host, axes=1))
                grad_u = 1j*k*wave_vec[:, np.newaxis]*u
            elif d == 3:
                center = np.array([3, 1, 2])
                diff = nodes_host - center[:, np.newaxis]
                r = la.norm(diff, axis=0)
                u = np.exp(1j*k*r) / r
                grad_u = diff * (1j*k*u/r - u/r**2)
            else:
                raise ValueError("invalid dim")
        else:
            center = np.array([3, 1, 2])[:d]
            diff = nodes_host - center[:, np.newaxis]
            dist_squared = np.sum(diff**2, axis=0)
            dist = np.sqrt(dist_squared)
            if d == 2:
                u = np.log(dist)
                grad_u = diff/dist_squared
            elif d == 3:
                u = 1/dist
                grad_u = -diff/dist**3
            else:
                assert False

        dn_u = 0
        for i in range(d):
            dn_u = dn_u + normal_host[i]*grad_u[i]

        # }}}

        u_dev = cl.array.to_device(queue, u)
        dn_u_dev = cl.array.to_device(queue, dn_u)
        grad_u_dev = cl.array.to_device(queue, grad_u)

        key = (case.qbx_order, case.geometry.mesh_name, resolution,
                case.expr.zero_op_name)

        bound_op = bind(qbx, case.expr.get_zero_op(k_sym, **knl_kwargs))
        error = bound_op(
                queue, u=u_dev, dn_u=dn_u_dev, grad_u=grad_u_dev, k=case.k)
        if 0:
            pt.plot(error)
            pt.show()

        linf_error_norm = norm(density_discr, queue, error, p=np.inf)
        print("--->", key, linf_error_norm)

        eoc_rec.add_data_point(qbx.h_max, linf_error_norm)

        if visualize:
            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, density_discr, target_order)

            bdry_normals = bind(density_discr, sym.normal(mesh.ambient_dim))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % resolution, [
                ("u", u_dev),
                ("bdry_normals", bdry_normals),
                ("error", error),
                ])

    print(eoc_rec)
    tgt_order = case.qbx_order - case.expr.order_drop
    assert eoc_rec.order_estimate() > tgt_order - 1.6