Exemple #1
0
    def compare_strategy_vs_benchmark(self, br, strategy_df, benchmark_df):
        """
        compare_strategy_vs_benchmark - Compares the trading strategy we are backtesting against a benchmark

        Parameters
        ----------
        br : BacktestRequest
            Parameters for backtest such as start and finish dates

        strategy_df : pandas.DataFrame
            Strategy time series

        benchmark_df : pandas.DataFrame
            Benchmark time series
        """

        include_benchmark = False
        calc_stats = False

        if hasattr(br, 'include_benchmark'): include_benchmark = br.include_benchmark
        if hasattr(br, 'calc_stats'): calc_stats = br.calc_stats

        if include_benchmark:
            tsd = TimeSeriesDesc()
            cash_backtest = CashBacktest()
            ts_filter = TimeSeriesFilter()
            ts_calcs = TimeSeriesCalcs()

            # align strategy time series with that of benchmark
            strategy_df, benchmark_df = strategy_df.align(benchmark_df, join='left', axis = 0)

            # if necessary apply vol target to benchmark (to make it comparable with strategy)
            if hasattr(br, 'portfolio_vol_adjust'):
                if br.portfolio_vol_adjust is True:
                    benchmark_df = cash_backtest.calculate_vol_adjusted_index_from_prices(benchmark_df, br = br)

            # only calculate return statistics if this has been specified (note when different frequencies of data
            # might underrepresent vol
            if calc_stats:
                benchmark_df = benchmark_df.fillna(method='ffill')
                tsd.calculate_ret_stats_from_prices(benchmark_df, br.ann_factor)
                benchmark_df.columns = tsd.summary()

            # realign strategy & benchmark
            strategy_benchmark_df = strategy_df.join(benchmark_df, how='inner')
            strategy_benchmark_df = strategy_benchmark_df.fillna(method='ffill')

            strategy_benchmark_df = ts_filter.filter_time_series_by_date(br.plot_start, br.finish_date, strategy_benchmark_df)
            strategy_benchmark_df = ts_calcs.create_mult_index_from_prices(strategy_benchmark_df)

            self._benchmark_pnl = benchmark_df
            self._benchmark_tsd = tsd

            return strategy_benchmark_df

        return strategy_df
    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 'index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not(hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq, br.signal_vol_resample_freq,
                                               br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df     # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                 portfolio = pandas.DataFrame(data = _pnl.sum(axis = 1), index = _pnl.index, columns = ['Portfolio'])
            elif br.portfolio_combination == 'mean':
                 portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(portfolio, br = br)

        self._portfolio = portfolio
        self._signal = signal_df                            # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df    # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(length_cols)

        self._pnl = _pnl                                                            # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)                             # individual signals cumulative P&L
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)                 # portfolio cumulative P&L
        self._cumportfolio.columns = ['Port']
class CashBacktest:

    def __init__(self):
        self.logger = LoggerManager().getLogger(__name__)
        self._pnl = None
        self._portfolio = None
        return

    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 'index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not(hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq, br.signal_vol_resample_freq,
                                               br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df     # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                 portfolio = pandas.DataFrame(data = _pnl.sum(axis = 1), index = _pnl.index, columns = ['Portfolio'])
            elif br.portfolio_combination == 'mean':
                 portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(portfolio, br = br)

        self._portfolio = portfolio
        self._signal = signal_df                            # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df    # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(length_cols)

        self._pnl = _pnl                                                            # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)                             # individual signals cumulative P&L
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)                 # portfolio cumulative P&L
        self._cumportfolio.columns = ['Port']

    def calculate_vol_adjusted_index_from_prices(self, prices_df, br):
        """
        calculate_vol_adjusted_index_from_price - Adjusts an index of prices for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        Returns
        -------
        pandas.Dataframe containing vol adjusted index
        """

        tsc = TimeSeriesCalcs()

        returns_df, leverage_df = self.calculate_vol_adjusted_returns(prices_df, br, returns = False)

        return tsc.create_mult_index(returns_df)

    def calculate_vol_adjusted_returns(self, returns_df, br, returns = True):
        """
        calculate_vol_adjusted_returns - Adjusts returns for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        returns_a_df : pandas.DataFrame
            Asset returns to be traded

        Returns
        -------
        pandas.DataFrame
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        if not(hasattr(br, 'portfolio_vol_resample_type')):
            br.portfolio_vol_resample_type = 'mean'

        leverage_df = self.calculate_leverage_factor(returns_df,
                                                               br.portfolio_vol_target, br.portfolio_vol_max_leverage,
                                                               br.portfolio_vol_periods, br.portfolio_vol_obs_in_year,
                                                               br.portfolio_vol_rebalance_freq, br.portfolio_vol_resample_freq,
                                                               br.portfolio_vol_resample_type)

        vol_returns_df = tsc.calculate_signal_returns_with_tc_matrix(leverage_df, returns_df, tc = br.spot_tc_bp)
        vol_returns_df.columns = returns_df.columns

        return vol_returns_df, leverage_df

    def calculate_leverage_factor(self, returns_df, vol_target, vol_max_leverage, vol_periods = 60, vol_obs_in_year = 252,
                                  vol_rebalance_freq = 'BM', data_resample_freq = None, data_resample_type = 'mean',
                                  returns = True, period_shift = 0):
        """
        calculate_leverage_factor - Calculates the time series of leverage for a specified vol target

        Parameters
        ----------
        returns_df : DataFrame
            Asset returns

        vol_target : float
            vol target for assets

        vol_max_leverage : float
            maximum leverage allowed

        vol_periods : int
            number of periods to calculate volatility

        vol_obs_in_year : int
            number of observations in the year

        vol_rebalance_freq : str
            how often to rebalance

        vol_resample_freq : str
            do we need to resample the underlying data first? (eg. have we got intraday data?)

        returns : boolean
            is this returns time series or prices?

        period_shift : int
            should we delay the signal by a number of periods?

        Returns
        -------
        pandas.Dataframe
        """

        tsc = TimeSeriesCalcs()

        if data_resample_freq is not None:
            return
            # TODO not implemented yet

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        roll_vol_df = tsc.rolling_volatility(returns_df,
                                        periods = vol_periods, obs_in_year = vol_obs_in_year).shift(period_shift)

        # calculate the leverage as function of vol target (with max lev constraint)
        lev_df = vol_target / roll_vol_df
        lev_df[lev_df > vol_max_leverage] = vol_max_leverage

        # should we take the mean, first, last in our resample
        if data_resample_type == 'mean':
            lev_df = lev_df.resample(vol_rebalance_freq).mean()
        elif data_resample_type == 'first':
            lev_df = lev_df.resample(vol_rebalance_freq).first()
        elif data_resample_type == 'last':
            lev_df = lev_df.resample(vol_rebalance_freq).last()
        else:
            # TODO implement other types
            return

        returns_df, lev_df = returns_df.align(lev_df, join='left', axis = 0)

        lev_df = lev_df.fillna(method='ffill')
        lev_df.ix[0:vol_periods] = numpy.nan    # ignore the first elements before the vol window kicks in

        return lev_df

    def get_backtest_output(self):
        return

    def get_pnl(self):
        """
        get_pnl - Gets P&L returns

        Returns
        -------
        pandas.Dataframe
        """
        return self._pnl

    def get_pnl_trades(self):
        """
        get_pnl_trades - Gets P&L of each individual trade per signal

        Returns
        -------
        pandas.Dataframe
        """

        if self._pnl_trades is None:
            tsc = TimeSeriesCalcs()
            self._pnl_trades = tsc.calculate_individual_trade_gains(self._signal, self._pnl)

        return self._pnl_trades

    def get_pnl_desc(self):
        """
        get_pnl_desc - Gets P&L return statistics in a string format

        Returns
        -------
        str
        """
        return self._tsd_signals.summary()

    def get_pnl_tsd(self):
        """
        get_pnl_tsd - Gets P&L return statistics of individual strategies as class to be queried

        Returns
        -------
        TimeSeriesDesc
        """

        return self._tsd_pnl

    def get_cumpnl(self):
        """
        get_cumpnl - Gets P&L as a cumulative time series of individual assets

        Returns
        -------
        pandas.DataFrame
        """

        return self._cumpnl

    def get_cumportfolio(self):
        """
        get_cumportfolio - Gets P&L as a cumulative time series of portfolio

        Returns
        -------
        pandas.DataFrame
        """

        return self._cumportfolio

    def get_portfolio_pnl(self):
        """
        get_portfolio_pnl - Gets portfolio returns in raw form (ie. not indexed into cumulative form)

        Returns
        -------
        pandas.DataFrame
        """

        return self._portfolio

    def get_portfolio_pnl_desc(self):
        """
        get_portfolio_pnl_desc - Gets P&L return statistics of portfolio as string

        Returns
        -------
        pandas.DataFrame
        """

        return self._tsd_portfolio.summary()

    def get_portfolio_pnl_tsd(self):
        """
        get_portfolio_pnl_tsd - Gets P&L return statistics of portfolio as class to be queried

        Returns
        -------
        TimeSeriesDesc
        """

        return self._tsd_portfolio

    def get_individual_leverage(self):
        """
        get_individual_leverage - Gets leverage for each asset historically

        Returns
        -------
        pandas.DataFrame
        """

        return self._individual_leverage

    def get_porfolio_leverage(self):
        """
        get_portfolio_leverage - Gets the leverage for the portfolio

        Returns
        -------
        pandas.DataFrame
        """

        return self._portfolio_leverage

    def get_porfolio_signal(self):
        """
        get_portfolio_signal - Gets the signals (with individual leverage & portfolio leverage) for each asset, which
        equates to what we would trade in practice

        Returns
        -------
        DataFrame
        """

        return self._portfolio_signal

    def get_signal(self):
        """
        get_signal - Gets the signals (with individual leverage, but excluding portfolio leverage) for each asset

        Returns
        -------
        pandas.DataFrame
        """

        return self._signal
Exemple #4
0
    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df,
                                               join='left',
                                               axis='index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(
            asset_df.values))  # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')  # fill these down
        asset_df = asset_df.fillna(method='ffill')  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not (hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(
                    returns_df, br.signal_vol_target,
                    br.signal_vol_max_leverage, br.signal_vol_periods,
                    br.signal_vol_obs_in_year, br.signal_vol_rebalance_freq,
                    br.signal_vol_resample_freq, br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(signal_df.values *
                                             leverage_df.values,
                                             index=signal_df.index,
                                             columns=signal_df.columns)

                self._individual_leverage = leverage_df  # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df,
                                                           returns_df,
                                                           tc=tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                portfolio = pandas.DataFrame(data=_pnl.sum(axis=1),
                                             index=_pnl.index,
                                             columns=['Portfolio'])
            elif br.portfolio_combination == 'mean':
                portfolio = pandas.DataFrame(data=_pnl.mean(axis=1),
                                             index=_pnl.index,
                                             columns=['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data=_pnl.mean(axis=1),
                                         index=_pnl.index,
                                         columns=['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data=numpy.ones(
            len(_pnl.index)),
                                                 index=_pnl.index,
                                                 columns=['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(
                    portfolio, br=br)

        self._portfolio = portfolio
        self._signal = signal_df  # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df  # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(
            portfolio_leverage_df.values.flatten()[numpy.newaxis, :],
            length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(data=numpy.multiply(
            numpy.transpose(leverage_matrix), signal_df.values),
                                                  index=signal_df.index,
                                                  columns=signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(
                    length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(
                length_cols)

        self._pnl = _pnl  # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(
            self._pnl)  # individual signals cumulative P&L
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(
            self._portfolio)  # portfolio cumulative P&L
        self._cumportfolio.columns = ['Port']
Exemple #5
0
class CashBacktest:
    def __init__(self):
        self.logger = LoggerManager().getLogger(__name__)
        self._pnl = None
        self._portfolio = None
        return

    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df,
                                               join='left',
                                               axis='index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(
            asset_df.values))  # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')  # fill these down
        asset_df = asset_df.fillna(method='ffill')  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not (hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(
                    returns_df, br.signal_vol_target,
                    br.signal_vol_max_leverage, br.signal_vol_periods,
                    br.signal_vol_obs_in_year, br.signal_vol_rebalance_freq,
                    br.signal_vol_resample_freq, br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(signal_df.values *
                                             leverage_df.values,
                                             index=signal_df.index,
                                             columns=signal_df.columns)

                self._individual_leverage = leverage_df  # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df,
                                                           returns_df,
                                                           tc=tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                portfolio = pandas.DataFrame(data=_pnl.sum(axis=1),
                                             index=_pnl.index,
                                             columns=['Portfolio'])
            elif br.portfolio_combination == 'mean':
                portfolio = pandas.DataFrame(data=_pnl.mean(axis=1),
                                             index=_pnl.index,
                                             columns=['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data=_pnl.mean(axis=1),
                                         index=_pnl.index,
                                         columns=['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data=numpy.ones(
            len(_pnl.index)),
                                                 index=_pnl.index,
                                                 columns=['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(
                    portfolio, br=br)

        self._portfolio = portfolio
        self._signal = signal_df  # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df  # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(
            portfolio_leverage_df.values.flatten()[numpy.newaxis, :],
            length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(data=numpy.multiply(
            numpy.transpose(leverage_matrix), signal_df.values),
                                                  index=signal_df.index,
                                                  columns=signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(
                    length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(
                length_cols)

        self._pnl = _pnl  # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(
            self._pnl)  # individual signals cumulative P&L
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(
            self._portfolio)  # portfolio cumulative P&L
        self._cumportfolio.columns = ['Port']

    def calculate_vol_adjusted_index_from_prices(self, prices_df, br):
        """
        calculate_vol_adjusted_index_from_price - Adjusts an index of prices for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        Returns
        -------
        pandas.Dataframe containing vol adjusted index
        """

        tsc = TimeSeriesCalcs()

        returns_df, leverage_df = self.calculate_vol_adjusted_returns(
            prices_df, br, returns=False)

        return tsc.create_mult_index(returns_df)

    def calculate_vol_adjusted_returns(self, returns_df, br, returns=True):
        """
        calculate_vol_adjusted_returns - Adjusts returns for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        returns_a_df : pandas.DataFrame
            Asset returns to be traded

        Returns
        -------
        pandas.DataFrame
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        if not (hasattr(br, 'portfolio_vol_resample_type')):
            br.portfolio_vol_resample_type = 'mean'

        leverage_df = self.calculate_leverage_factor(
            returns_df, br.portfolio_vol_target, br.portfolio_vol_max_leverage,
            br.portfolio_vol_periods, br.portfolio_vol_obs_in_year,
            br.portfolio_vol_rebalance_freq, br.portfolio_vol_resample_freq,
            br.portfolio_vol_resample_type)

        vol_returns_df = tsc.calculate_signal_returns_with_tc_matrix(
            leverage_df, returns_df, tc=br.spot_tc_bp)
        vol_returns_df.columns = returns_df.columns

        return vol_returns_df, leverage_df

    def calculate_leverage_factor(self,
                                  returns_df,
                                  vol_target,
                                  vol_max_leverage,
                                  vol_periods=60,
                                  vol_obs_in_year=252,
                                  vol_rebalance_freq='BM',
                                  data_resample_freq=None,
                                  data_resample_type='mean',
                                  returns=True,
                                  period_shift=0):
        """
        calculate_leverage_factor - Calculates the time series of leverage for a specified vol target

        Parameters
        ----------
        returns_df : DataFrame
            Asset returns

        vol_target : float
            vol target for assets

        vol_max_leverage : float
            maximum leverage allowed

        vol_periods : int
            number of periods to calculate volatility

        vol_obs_in_year : int
            number of observations in the year

        vol_rebalance_freq : str
            how often to rebalance

        vol_resample_freq : str
            do we need to resample the underlying data first? (eg. have we got intraday data?)

        returns : boolean
            is this returns time series or prices?

        period_shift : int
            should we delay the signal by a number of periods?

        Returns
        -------
        pandas.Dataframe
        """

        tsc = TimeSeriesCalcs()

        if data_resample_freq is not None:
            return
            # TODO not implemented yet

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        roll_vol_df = tsc.rolling_volatility(
            returns_df, periods=vol_periods,
            obs_in_year=vol_obs_in_year).shift(period_shift)

        # calculate the leverage as function of vol target (with max lev constraint)
        lev_df = vol_target / roll_vol_df
        lev_df[lev_df > vol_max_leverage] = vol_max_leverage

        # should we take the mean, first, last in our resample
        if data_resample_type == 'mean':
            lev_df = lev_df.resample(vol_rebalance_freq).mean()
        elif data_resample_type == 'first':
            lev_df = lev_df.resample(vol_rebalance_freq).first()
        elif data_resample_type == 'last':
            lev_df = lev_df.resample(vol_rebalance_freq).last()
        else:
            # TODO implement other types
            return

        returns_df, lev_df = returns_df.align(lev_df, join='left', axis=0)

        lev_df = lev_df.fillna(method='ffill')
        lev_df.ix[
            0:
            vol_periods] = numpy.nan  # ignore the first elements before the vol window kicks in

        return lev_df

    def get_backtest_output(self):
        return

    def get_pnl(self):
        """
        get_pnl - Gets P&L returns

        Returns
        -------
        pandas.Dataframe
        """
        return self._pnl

    def get_pnl_trades(self):
        """
        get_pnl_trades - Gets P&L of each individual trade per signal

        Returns
        -------
        pandas.Dataframe
        """

        if self._pnl_trades is None:
            tsc = TimeSeriesCalcs()
            self._pnl_trades = tsc.calculate_individual_trade_gains(
                self._signal, self._pnl)

        return self._pnl_trades

    def get_pnl_desc(self):
        """
        get_pnl_desc - Gets P&L return statistics in a string format

        Returns
        -------
        str
        """
        return self._tsd_signals.summary()

    def get_pnl_tsd(self):
        """
        get_pnl_tsd - Gets P&L return statistics of individual strategies as class to be queried

        Returns
        -------
        TimeSeriesDesc
        """

        return self._tsd_pnl

    def get_cumpnl(self):
        """
        get_cumpnl - Gets P&L as a cumulative time series of individual assets

        Returns
        -------
        pandas.DataFrame
        """

        return self._cumpnl

    def get_cumportfolio(self):
        """
        get_cumportfolio - Gets P&L as a cumulative time series of portfolio

        Returns
        -------
        pandas.DataFrame
        """

        return self._cumportfolio

    def get_portfolio_pnl(self):
        """
        get_portfolio_pnl - Gets portfolio returns in raw form (ie. not indexed into cumulative form)

        Returns
        -------
        pandas.DataFrame
        """

        return self._portfolio

    def get_portfolio_pnl_desc(self):
        """
        get_portfolio_pnl_desc - Gets P&L return statistics of portfolio as string

        Returns
        -------
        pandas.DataFrame
        """

        return self._tsd_portfolio.summary()

    def get_portfolio_pnl_tsd(self):
        """
        get_portfolio_pnl_tsd - Gets P&L return statistics of portfolio as class to be queried

        Returns
        -------
        TimeSeriesDesc
        """

        return self._tsd_portfolio

    def get_individual_leverage(self):
        """
        get_individual_leverage - Gets leverage for each asset historically

        Returns
        -------
        pandas.DataFrame
        """

        return self._individual_leverage

    def get_porfolio_leverage(self):
        """
        get_portfolio_leverage - Gets the leverage for the portfolio

        Returns
        -------
        pandas.DataFrame
        """

        return self._portfolio_leverage

    def get_porfolio_signal(self):
        """
        get_portfolio_signal - Gets the signals (with individual leverage & portfolio leverage) for each asset, which
        equates to what we would trade in practice

        Returns
        -------
        DataFrame
        """

        return self._portfolio_signal

    def get_signal(self):
        """
        get_signal - Gets the signals (with individual leverage, but excluding portfolio leverage) for each asset

        Returns
        -------
        pandas.DataFrame
        """

        return self._signal
    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()

        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 0)

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals
        interim_portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                interim_portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(interim_portfolio, br = br)

        self._portfolio = interim_portfolio
        self._signal = signal_df
        self._portfolio_leverage = portfolio_leverage_df

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns) / float(length_cols)

        self._pnl = _pnl

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)
        self._cumportfolio.columns = ['Port']
class CashBacktest:

    def __init__(self):
        self.logger = LoggerManager().getLogger(__name__)
        self._pnl = None
        self._portfolio = None
        return

    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()

        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 0)

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals
        interim_portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                interim_portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(interim_portfolio, br = br)

        self._portfolio = interim_portfolio
        self._signal = signal_df
        self._portfolio_leverage = portfolio_leverage_df

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns) / float(length_cols)

        self._pnl = _pnl

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)
        self._cumportfolio.columns = ['Port']

    def calculate_vol_adjusted_index_from_prices(self, prices_df, br):
        """
        calculate_vol_adjusted_index_from_price - Adjusts an index of prices for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        Returns
        -------
        pandas.Dataframe containing vol adjusted index
        """

        tsc = TimeSeriesCalcs()

        returns_df, leverage_df = self.calculate_vol_adjusted_returns(prices_df, br, returns = False)

        return tsc.create_mult_index(returns_df)

    def calculate_vol_adjusted_returns(self, returns_df, br, returns = True):
        """
        calculate_vol_adjusted_returns - Adjusts returns for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        returns_a_df : pandas.DataFrame
            Asset returns to be traded

        Returns
        -------
        pandas.DataFrame
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        leverage_df = self.calculate_leverage_factor(returns_df,
                                                               br.portfolio_vol_target, br.portfolio_vol_max_leverage,
                                                               br.portfolio_vol_periods, br.portfolio_vol_obs_in_year,
                                                               br.portfolio_vol_rebalance_freq)

        vol_returns_df = tsc.calculate_signal_returns_with_tc_matrix(leverage_df, returns_df, tc = br.spot_tc_bp)
        vol_returns_df.columns = returns_df.columns

        return vol_returns_df, leverage_df

    def calculate_leverage_factor(self, returns_df, vol_target, vol_max_leverage, vol_periods = 60, vol_obs_in_year = 252,
                                  vol_rebalance_freq = 'BM', returns = True, period_shift = 0):
        """
        calculate_leverage_factor - Calculates the time series of leverage for a specified vol target

        Parameters
        ----------
        returns_df : DataFrame
            Asset returns

        vol_target : float
            vol target for assets

        vol_max_leverage : float
            maximum leverage allowed

        vol_periods : int
            number of periods to calculate volatility

        vol_obs_in_year : int
            number of observations in the year

        vol_rebalance_freq : str
            how often to rebalance

        returns : boolean
            is this returns time series or prices?

        period_shift : int
            should we delay the signal by a number of periods?

        Returns
        -------
        pandas.Dataframe
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        roll_vol_df = tsc.rolling_volatility(returns_df,
                                        periods = vol_periods, obs_in_year = vol_obs_in_year).shift(period_shift)

        # calculate the leverage as function of vol target (with max lev constraint)
        lev_df = vol_target / roll_vol_df
        lev_df[lev_df > vol_max_leverage] = vol_max_leverage

        # only allow the leverage change at resampling frequency (eg. monthly 'BM')
        lev_df = lev_df.resample(vol_rebalance_freq)

        returns_df, lev_df = returns_df.align(lev_df, join='left', axis = 0)

        lev_df = lev_df.fillna(method='ffill')

        return lev_df

    def get_backtest_output(self):
        return

    def get_pnl(self):
        """
        get_pnl - Gets P&L returns

        Returns
        -------
        pandas.Dataframe
        """
        return self._pnl

    def get_pnl_desc(self):
        """
        get_pnl_desc - Gets P&L return statistics in a string format

        Returns
        -------
        str
        """
        return self._tsd_signals.summary()

    def get_pnl_tsd(self):
        """
        get_pnl_tsd - Gets P&L return statistics class which can be queried.

        Returns
        -------
        TimeSeriesDesc
        """

        return self._tsd_pnl

    def get_cumpnl(self):
        """
        get_cumpnl - Gets P&L as a cumulative time series of individual assets

        Returns
        -------
        pandas.DataFrame
        """

        return self._cumpnl

    def get_cumportfolio(self):
        """
        get_cumportfolio - Gets P&L as a cumulative time series of portfolio

        Returns
        -------
        pandas.DataFrame
        """

        return self._cumportfolio

    def get_portfolio_pnl_desc(self):
        """
        get_portfolio_pnl_desc - Gets P&L return statistics of portfolio as string

        Returns
        -------
        pandas.DataFrame
        """

        return self._tsd_portfolio.summary()

    def get_portfolio_pnl_tsd(self):
        """
        get_portfolio_pnl_tsd - Gets P&L return statistics of portfolio as class to be queried

        Returns
        -------
        TimeSeriesDesc
        """

        return self._tsd_portfolio

    def get_individual_leverage(self):
        """
        get_individual_leverage - Gets leverage for each asset historically

        Returns
        -------
        pandas.DataFrame
        """

        return self._individual_leverage

    def get_porfolio_leverage(self):
        """
        get_portfolio_leverage - Gets the leverage for the portfolio

        Returns
        -------
        pandas.DataFrame
        """

        return self._portfolio_leverage

    def get_porfolio_signal(self):
        """
        get_portfolio_signal - Gets the signals (with individual leverage & portfolio leverage) for each asset, which
        equates to what we would trade in practice

        Returns
        -------
        DataFrame
        """

        return self._portfolio_signal

    def get_signal(self):
        """
        get_signal - Gets the signals (with individual leverage, but excluding portfolio leverage) for each asset

        Returns
        -------
        pandas.DataFrame
        """

        return self._signal