def init_roi(config_file): """ 1) Loads configuration file 2) Checks parameters 3) Selects the ROI 4) Checks the zoom factor """ # read the json configuration file f = open(config_file) user_cfg = json.load(f) f.close() # Check that all the mandatory arguments are defined, and warn about # 'unknown' params check_parameters(user_cfg) # fill the config module: updates the content of the config.cfg dictionary # with the content of the user_cfg dictionary cfg.update(user_cfg) # sets keys 'clr', 'cld' and 'roi' of the reference image to None if they # are not already defined. The default values of these optional arguments # can not be defined directly in the config.py module. They would be # overwritten by the previous update, because they are in a nested dict. cfg['images'][0].setdefault('clr') cfg['images'][0].setdefault('cld') cfg['images'][0].setdefault('roi') # update roi definition if the full_img flag is set to true if ('full_img' in cfg) and cfg['full_img']: sz = common.image_size_tiffinfo(cfg['images'][0]['img']) cfg['roi'] = {} cfg['roi']['x'] = 0 cfg['roi']['y'] = 0 cfg['roi']['w'] = sz[0] cfg['roi']['h'] = sz[1] # check that the roi is well defined if 'roi' not in cfg or any(p not in cfg['roi'] for p in ['x', 'y', 'w', 'h']): print "missing or incomplete ROI definition" print "ROI will be redefined by interactive selection" x, y, w, h = common.get_roi_coordinates(cfg['images'][0]['img'], cfg['images'][0]['prv']) cfg['roi'] = {} cfg['roi']['x'] = x cfg['roi']['y'] = y cfg['roi']['w'] = w cfg['roi']['h'] = h else : x = cfg['roi']['x'] y = cfg['roi']['y'] w = cfg['roi']['w'] h = cfg['roi']['h'] try: print "ROI x, y, w, h = %d, %d, %d, %d" % (x, y, w, h) except TypeError: print 'Neither a ROI nor a preview file are defined. Aborting.' return # check the zoom factor z = cfg['subsampling_factor'] assert(z > 0 and z == np.floor(z)) # ensure that the coordinates of the ROI are multiples of the zoom factor, # to avoid bad registration of tiles due to rounding problems. x, y, w, h = common.round_roi_to_nearest_multiple(z, x, y, w, h) cfg['roi']['x'] = x cfg['roi']['y'] = y cfg['roi']['w'] = w cfg['roi']['h'] = h
def init_roi(config_file): """ 1) Loads configuration file 2) Checks parameters 3) Selects the ROI 4) Checks the zoom factor """ # read the json configuration file f = open(config_file) user_cfg = json.load(f) f.close() # Check that all the mandatory arguments are defined, and warn about # 'unknown' params check_parameters(user_cfg) # fill the config module: updates the content of the config.cfg dictionary # with the content of the user_cfg dictionary cfg.update(user_cfg) # sets keys 'clr', 'cld' and 'roi' of the reference image to None if they # are not already defined. The default values of these optional arguments # can not be defined directly in the config.py module. They would be # overwritten by the previous update, because they are in a nested dict. cfg['images'][0].setdefault('clr') cfg['images'][0].setdefault('cld') cfg['images'][0].setdefault('roi') cfg['images'][0].setdefault('wat') # update roi definition if the full_img flag is set to true if ('full_img' in cfg) and cfg['full_img']: sz = common.image_size_tiffinfo(cfg['images'][0]['img']) cfg['roi'] = {} cfg['roi']['x'] = 0 cfg['roi']['y'] = 0 cfg['roi']['w'] = sz[0] cfg['roi']['h'] = sz[1] # check that the roi is well defined if 'roi' not in cfg or any(p not in cfg['roi'] for p in ['x', 'y', 'w', 'h']): print "missing or incomplete ROI definition" print "ROI will be redefined by interactive selection" x, y, w, h = common.get_roi_coordinates(cfg['images'][0]['img'], cfg['images'][0]['prv']) cfg['roi'] = {} cfg['roi']['x'] = x cfg['roi']['y'] = y cfg['roi']['w'] = w cfg['roi']['h'] = h else: x = cfg['roi']['x'] y = cfg['roi']['y'] w = cfg['roi']['w'] h = cfg['roi']['h'] try: print "ROI x, y, w, h = %d, %d, %d, %d" % (x, y, w, h) except TypeError: print 'Neither a ROI nor a preview file are defined. Aborting.' return # check the zoom factor z = cfg['subsampling_factor'] assert (z > 0 and z == np.floor(z)) # ensure that the coordinates of the ROI are multiples of the zoom factor, # to avoid bad registration of tiles due to rounding problems. x, y, w, h = common.round_roi_to_nearest_multiple(z, x, y, w, h) cfg['roi']['x'] = x cfg['roi']['y'] = y cfg['roi']['w'] = w cfg['roi']['h'] = h # get utm zone utm_zone = rpc_utils.utm_zone( cfg['images'][0]['rpc'], *[cfg['roi'][v] for v in ['x', 'y', 'w', 'h']]) cfg['utm_zone'] = utm_zone
def main(config_file): """ Launches s2p with the parameters given by a json file. Args: config_file: path to the config json file """ # read the json configuration file f = open(config_file) user_cfg = json.load(f) f.close() # Check that all the mandatory arguments are defined, and warn about # 'unknown' params check_parameters(user_cfg) # fill the config module: updates the content of the config.cfg dictionary # with the content of the user_cfg dictionary cfg.update(user_cfg) # sets keys 'clr', 'cld' and 'roi' of the reference image to None if they # are not already defined. The default values of these optional arguments # can not be defined directly in the config.py module. They would be # overwritten by the previous update, because they are in a nested dict. cfg['images'][0].setdefault('clr') cfg['images'][0].setdefault('cld') cfg['images'][0].setdefault('roi') # update roi definition if the full_img flag is set to true if ('full_img' in cfg) and cfg['full_img']: sz = common.image_size_tiffinfo(cfg['images'][0]['img']) cfg['roi'] = {} cfg['roi']['x'] = 0 cfg['roi']['y'] = 0 cfg['roi']['w'] = sz[0] cfg['roi']['h'] = sz[1] # check that the roi is well defined if 'roi' not in cfg or any(p not in cfg['roi'] for p in ['x', 'y', 'w', 'h']): print "missing or incomplete ROI definition" print "ROI will be redefined by interactive selection" x, y, w, h = common.get_roi_coordinates(cfg['images'][0]['img'], cfg['images'][0]['prv']) cfg['roi'] = {} cfg['roi']['x'] = x cfg['roi']['y'] = y cfg['roi']['w'] = w cfg['roi']['h'] = h # check the zoom factor z = cfg['subsampling_factor'] assert(z > 0 and z == np.floor(z)) # create tmp dir and output directory for the experiment, and store a json # dump of the config.cfg dictionary there if not os.path.exists(cfg['temporary_dir']): os.makedirs(cfg['temporary_dir']) if not os.path.exists(os.path.join(cfg['temporary_dir'], 'meta')): os.makedirs(os.path.join(cfg['temporary_dir'], 'meta')) if not os.path.exists(cfg['out_dir']): os.makedirs(cfg['out_dir']) f = open('%s/config.json' % cfg['out_dir'], 'w') json.dump(cfg, f, indent=2) f.close() # measure total runtime t0 = time.time() # needed srtm tiles srtm_tiles = srtm.list_srtm_tiles(cfg['images'][0]['rpc'], *cfg['roi'].values()) for s in srtm_tiles: srtm.get_srtm_tile(s, cfg['srtm_dir']) # height map if len(cfg['images']) == 2: height_map = process_pair(cfg['out_dir'], cfg['images'][0]['img'], cfg['images'][0]['rpc'], cfg['images'][1]['img'], cfg['images'][1]['rpc'], cfg['roi']['x'], cfg['roi']['y'], cfg['roi']['w'], cfg['roi']['h'], None, None, None, cfg['images'][0]['cld'], cfg['images'][0]['roi']) else: height_map = process_triplet(cfg['out_dir'], cfg['images'][0]['img'], cfg['images'][0]['rpc'], cfg['images'][1]['img'], cfg['images'][1]['rpc'], cfg['images'][2]['img'], cfg['images'][2]['rpc'], cfg['roi']['x'], cfg['roi']['y'], cfg['roi']['w'], cfg['roi']['h'], cfg['fusion_thresh'], None, None, None, None, cfg['images'][0]['cld'], cfg['images'][0]['roi']) # point cloud generate_cloud(cfg['out_dir'], height_map, cfg['images'][0]['rpc'], cfg['roi']['x'], cfg['roi']['y'], cfg['roi']['w'], cfg['roi']['h'], cfg['images'][0]['img'], cfg['images'][0]['clr'], cfg['offset_ply']) # digital surface model out_dsm = '%s/dsm.tif' % cfg['out_dir'] point_clouds_list = glob.glob('%s/cloud.ply' % cfg['out_dir']) generate_dsm(out_dsm, point_clouds_list, cfg['dsm_resolution']) # crop corresponding areas in the secondary images if not cfg['full_img']: crop_corresponding_areas(cfg['out_dir'], cfg['images'], cfg['roi']) # runtime t = int(time.time() - t0) h = t/3600 m = (t/60) % 60 s = t % 60 print "Total runtime: %dh:%dm:%ds" % (h, m, s) common.garbage_cleanup()
def process_pair_single_tile(out_dir, img1, rpc1, img2, rpc2, x=None, y=None, w=None, h=None, prv1=None, cld_msk=None, roi_msk=None, A=None): """ Computes a disparity map from a Pair of Pleiades images, without tiling Args: out_dir: path to the output directory img1: path to the reference image. rpc1: paths to the xml file containing the rpc coefficients of the reference image img2: path to the secondary image. rpc2: paths to the xml file containing the rpc coefficients of the secondary image x, y, w, h: four integers defining the rectangular ROI in the reference image. (x, y) is the top-left corner, and (w, h) are the dimensions of the rectangle. prv1 (optional): path to a preview of the reference image cld_msk (optional): path to a gml file containing a cloud mask roi_msk (optional): path to a gml file containing a mask defining the area contained in the full image. A (optional, default None): pointing correction matrix. If None, it will be estimated by this function. Returns: nothing """ # create a directory for the experiment if not os.path.exists(out_dir): os.makedirs(out_dir) # output files rect1 = '%s/rectified_ref.tif' % (out_dir) rect2 = '%s/rectified_sec.tif' % (out_dir) disp = '%s/rectified_disp.tif' % (out_dir) mask = '%s/rectified_mask.png' % (out_dir) cwid_msk = '%s/cloud_water_image_domain_mask.png' % (out_dir) subsampling = '%s/subsampling.txt' % (out_dir) pointing = '%s/pointing.txt' % out_dir center = '%s/center_keypts_sec.txt' % out_dir sift_matches = '%s/sift_matches.txt' % out_dir sift_matches_plot = '%s/sift_matches_plot.png' % out_dir H_ref = '%s/H_ref.txt' % out_dir H_sec = '%s/H_sec.txt' % out_dir disp_min_max = '%s/disp_min_max.txt' % out_dir config = '%s/config.json' % out_dir # select ROI try: print "ROI x, y, w, h = %d, %d, %d, %d" % (x, y, w, h) except TypeError: if prv1: x, y, w, h = common.get_roi_coordinates(img1, prv1) else: print 'Neither a ROI nor a preview file are defined. Aborting.' return # redirect stdout and stderr to log file if not cfg['debug']: fout = open('%s/stdout.log' % out_dir, 'w', 0) # '0' for no buffering sys.stdout = fout sys.stderr = fout # debug print print 'tile %d %d running on process %s' % (x, y, multiprocessing.current_process()) # ensure that the coordinates of the ROI are multiples of the zoom factor z = cfg['subsampling_factor'] x, y, w, h = common.round_roi_to_nearest_multiple(z, x, y, w, h) # check if the ROI is completely masked (water, or outside the image domain) H = np.array([[1, 0, -x], [0, 1, -y], [0, 0, 1]]) if masking.cloud_water_image_domain(cwid_msk, w, h, H, rpc1, roi_msk, cld_msk): print "Tile masked by water or outside definition domain, skip" open("%s/this_tile_is_masked.txt" % out_dir, 'a').close() sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ if not cfg['debug']: fout.close() return # correct pointing error # A is the correction matrix and m is the list of sift matches if A is None: A, m = pointing_accuracy.compute_correction(img1, rpc1, img2, rpc2, x, y, w, h) if A is not None: np.savetxt(pointing, A) if m is not None: np.savetxt(sift_matches, m) np.savetxt(center, np.mean(m[:, 2:4], 0)) visualisation.plot_matches_pleiades(img1, img2, rpc1, rpc2, m, x, y, w, h, sift_matches_plot) else: m = None # rectification H1, H2, disp_min, disp_max = rectification.rectify_pair(img1, img2, rpc1, rpc2, x, y, w, h, rect1, rect2, A, m) # block-matching if cfg['disp_min'] is not None: disp_min = cfg['disp_min'] if cfg['disp_max'] is not None: disp_max = cfg['disp_max'] block_matching.compute_disparity_map(rect1, rect2, disp, mask, cfg['matching_algorithm'], disp_min, disp_max) # intersect mask with the cloud_water_image_domain mask (recomputed here to # get to be sampled on the epipolar grid) ww, hh = common.image_size(rect1) masking.cloud_water_image_domain(cwid_msk, ww, hh, H1, rpc1, roi_msk, cld_msk) try: masking.intersection(mask, mask, cwid_msk) masking.erosion(mask, mask, cfg['msk_erosion']) except OSError: print "file %s not produced" % mask # save the subsampling factor, the rectifying homographies and the # disparity bounds. # ATTENTION if subsampling_factor is > 1 the rectified images will be # smaller, and the homography matrices and disparity range will reflect # this fact np.savetxt(subsampling, np.array([z])) np.savetxt(H_ref, H1) np.savetxt(H_sec, H2) np.savetxt(disp_min_max, np.array([disp_min, disp_max])) # save json file with all the parameters needed to reproduce this tile tile_cfg = copy.deepcopy(cfg) tile_cfg['roi'] = {'x': x, 'y': y, 'w': w, 'h': h} f = open(config, 'w') json.dump(tile_cfg, f, indent=2) f.close() # close logs common.garbage_cleanup() if not cfg['debug']: sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ fout.close() return
def process_triplet(out_dir, img1, rpc1, img2, rpc2, img3, rpc3, x=None, y=None, w=None, h=None, thresh=3, tile_w=None, tile_h=None, overlap=None, prv1=None, cld_msk=None, roi_msk=None): """ Computes a height map from three Pleiades images. Args: out_dir: path to the output directory img1: path to the reference image. rpc1: paths to the xml file containing the rpc coefficients of the reference image img2: path to the secondary image of the first pair rpc2: paths to the xml file containing the rpc coefficients of the secondary image of the first pair img3: path to the secondary image of the second pair rpc3: paths to the xml file containing the rpc coefficients of the secondary image of the second pair x, y, w, h: four integers defining the rectangular ROI in the reference image. (x, y) is the top-left corner, and (w, h) are the dimensions of the rectangle. The ROI may be as big as you want, as it will be cutted into small tiles for processing. thresh: threshold used for the fusion algorithm, in meters. tile_w, tile_h: dimensions of the tiles overlap: width of overlapping bands between tiles prv1 (optional): path to a preview of the reference image cld_msk (optional): path to a gml file containing a cloud mask roi_msk (optional): path to a gml file containing a mask defining the area contained in the full image. Returns: Nothing """ # create a directory for the experiment if not os.path.exists(out_dir): os.makedirs(out_dir) # duplicate stdout and stderr to log file tee.Tee('%s/stdout.log' % out_dir, 'w') # select ROI try: print "ROI x, y, w, h = %d, %d, %d, %d" % (x, y, w, h) except TypeError: x, y, w, h = common.get_roi_coordinates(rpc1, prv1) print "ROI x, y, w, h = %d, %d, %d, %d" % (x, y, w, h) # process the two pairs out_dir_left = '%s/left' % out_dir height_map_left = process_pair(out_dir_left, img1, rpc1, img2, rpc2, x, y, w, h, tile_w, tile_h, overlap, cld_msk, roi_msk) out_dir_right = '%s/right' % out_dir height_map_right = process_pair(out_dir_right, img1, rpc1, img3, rpc3, x, y, w, h, tile_w, tile_h, overlap, cld_msk, roi_msk) # merge the two height maps height_map = '%s/height_map.tif' % out_dir fusion.merge(height_map_left, height_map_right, thresh, height_map) common.garbage_cleanup() return height_map
def init_dirs_srtm_roi(config_file): """ 1) Loads configuration file 2) Checks parameters 3) Selects the ROI 4) Checks the zoom factor 5) Creates different directories : output, temp... Args: config_file : path to a json configuration file """ # read the json configuration file f = open(config_file) user_cfg = json.load(f) f.close() # Check that all the mandatory arguments are defined, and warn about # 'unknown' params check_parameters(user_cfg) # fill the config module: updates the content of the config.cfg dictionary # with the content of the user_cfg dictionary cfg.update(user_cfg) # sets keys 'clr', 'cld' and 'roi' of the reference image to None if they # are not already defined. The default values of these optional arguments # can not be defined directly in the config.py module. They would be # overwritten by the previous update, because they are in a nested dict. cfg['images'][0].setdefault('clr') cfg['images'][0].setdefault('cld') cfg['images'][0].setdefault('roi') # update roi definition if the full_img flag is set to true if ('full_img' in cfg) and cfg['full_img']: sz = common.image_size_tiffinfo(cfg['images'][0]['img']) cfg['roi'] = {} cfg['roi']['x'] = 0 cfg['roi']['y'] = 0 cfg['roi']['w'] = sz[0] cfg['roi']['h'] = sz[1] # check that the roi is well defined if 'roi' not in cfg or any(p not in cfg['roi'] for p in ['x', 'y', 'w', 'h']): print "missing or incomplete ROI definition" print "ROI will be redefined by interactive selection" x, y, w, h = common.get_roi_coordinates(cfg['images'][0]['img'], cfg['images'][0]['prv']) cfg['roi'] = {} cfg['roi']['x'] = x cfg['roi']['y'] = y cfg['roi']['w'] = w cfg['roi']['h'] = h else: x = cfg['roi']['x'] y = cfg['roi']['y'] w = cfg['roi']['w'] h = cfg['roi']['h'] try: print "ROI x, y, w, h = %d, %d, %d, %d" % (x, y, w, h) except TypeError: print 'Neither a ROI nor a preview file are defined. Aborting.' return # check the zoom factor z = cfg['subsampling_factor'] assert(z > 0 and z == np.floor(z)) # create tmp dir and output directory for the experiment, and store a json # dump of the config.cfg dictionary there, download srtm files... if not os.path.exists(cfg['out_dir']): os.makedirs(cfg['out_dir']) if not os.path.exists(cfg['temporary_dir']): os.makedirs(cfg['temporary_dir']) if not os.path.exists(os.path.join(cfg['temporary_dir'], 'meta')): os.makedirs(os.path.join(cfg['temporary_dir'], 'meta')) f = open('%s/config.json' % cfg['out_dir'], 'w') json.dump(cfg, f, indent=2) f.close() # duplicate stdout and stderr to log file tee.Tee('%s/stdout.log' % cfg['out_dir'], 'w') # needed srtm tiles srtm_tiles = srtm.list_srtm_tiles(cfg['images'][0]['rpc'], *cfg['roi'].values()) for s in srtm_tiles: srtm.get_srtm_tile(s, cfg['srtm_dir'])