def color_crop_ref(tile_info, clr=None): """ Colorizations of a crop_ref (for a given tile) Args: tile_info: a dictionary that provides all you need to process a tile clr (optional): if crop_ref is a pan image, will perform the pansharpening with the color image clr If clr is None then: case 1: tile is an RGBI image, so removes I channel, and perform rescaling of the remaining channels case 2: tile is already an RGB image, so just perform rescaling Note that if rescaling is already performed, then the file applied_minmax.txt exists: if applied_minmax.txt exists and cfg['skip_existing'] is True, rescaling won't be performed again if applied_minmax.txt exists and is different from global_minmax, rescaling will be compulsorily performed (can occur if a new tile is added) """ # get info x, y, w, h = tile_info["coordinates"] tile_dir = tile_info["directory"] z = cfg["subsampling_factor"] # paths crop_ref = tile_dir + "/roi_ref_crop.tif" global_minmax = cfg["out_dir"] + "/global_minmax.txt" applied_minmax = tile_dir + "/applied_minmax.txt" global_minmax_arr = np.loadtxt(global_minmax) if cfg["color_ply"]: doProcess = False if not os.path.exists(applied_minmax): doProcess = True applied_minmax_arr = global_minmax_arr else: applied_minmax_arr = np.loadtxt(applied_minmax) if (applied_minmax_arr[0] != global_minmax_arr[0]) or (applied_minmax_arr[1] != global_minmax_arr[1]): doProcess = True applied_minmax_arr = global_minmax_arr if not doProcess and cfg["skip_existing"]: print "Rescaling of tile %s already done, skip" % tile_dir else: crop_color = tile_dir + "/roi_color_ref.tif" if clr is not None: triangulation.colorize(crop_ref, clr, x, y, z, crop_color, applied_minmax_arr[0], applied_minmax_arr[1]) else: # use of image_rescaleintensities np.savetxt(applied_minmax, applied_minmax_arr) if common.image_pix_dim_tiffinfo(crop_ref) == 4: print "the image is pansharpened fusioned" tmp = common.rgbi_to_rgb(crop_ref, out=None, tilewise=True) # common.image_qauto(tmp, crop_color, tilewise=False) common.image_rescaleintensities(tmp, crop_color, applied_minmax_arr[0], applied_minmax_arr[1]) else: print "no color data" # common.image_qauto(crop_ref, crop_color, tilewise=False) common.image_rescaleintensities(crop_ref, crop_color, applied_minmax_arr[0], applied_minmax_arr[1])
def color_crop_ref(tile_info, clr=None): """ Colorizations of a crop_ref (for a given tile) Args: tile_info: a dictionary that provides all you need to process a tile clr (optional): if crop_ref is a pan image, will perform the pansharpening with the color image clr If clr is None then: case 1: tile is an RGBI image, so removes I channel, and perform rescaling of the remaining channels case 2: tile is already an RGB image, so just perform rescaling Note that if rescaling is already performed, then the file applied_minmax.txt exists: if applied_minmax.txt exists and cfg['skip_existing'] is True, rescaling won't be performed again if applied_minmax.txt exists and is different from global_minmax, rescaling will be compulsorily performed (can occur if a new tile is added) """ # get info x, y, w, h = tile_info['coordinates'] tile_dir = tile_info['directory'] z = cfg['subsampling_factor'] # paths crop_ref = tile_dir + '/roi_ref_crop.tif' global_minmax = cfg['out_dir'] + '/global_minmax.txt' applied_minmax = tile_dir + '/applied_minmax.txt' global_minmax_arr = np.loadtxt(global_minmax) if cfg['color_ply']: doProcess = False if not os.path.exists(applied_minmax): doProcess = True applied_minmax_arr = global_minmax_arr else: applied_minmax_arr = np.loadtxt(applied_minmax) if (applied_minmax_arr[0] != global_minmax_arr[0]) or ( applied_minmax_arr[1] != global_minmax_arr[1]): doProcess = True applied_minmax_arr = global_minmax_arr if not doProcess and cfg['skip_existing']: print 'Rescaling of tile %s already done, skip' % tile_dir else: crop_color = tile_dir + '/roi_color_ref.tif' if clr is not None: triangulation.colorize(crop_ref, clr, x, y, z, crop_color, applied_minmax_arr[0], applied_minmax_arr[1]) else: # use of image_rescaleintensities np.savetxt(applied_minmax, applied_minmax_arr) if common.image_pix_dim_tiffinfo(crop_ref) == 4: print 'the image is pansharpened fusioned' tmp = common.rgbi_to_rgb(crop_ref, out=None, tilewise=True) #common.image_qauto(tmp, crop_color, tilewise=False) common.image_rescaleintensities(tmp, crop_color, applied_minmax_arr[0], applied_minmax_arr[1]) else: print 'no color data' #common.image_qauto(crop_ref, crop_color, tilewise=False) common.image_rescaleintensities(crop_ref, crop_color, applied_minmax_arr[0], applied_minmax_arr[1])
def generate_cloud(out_dir, height_map, rpc1, x, y, w, h, im1, clr, do_offset=False): """ Args: out_dir: output directory. The file cloud.ply will be written there height_map: path to the height map, produced by the process_pair or process_triplet function rpc1: path to the xml file containing rpc coefficients for the reference image x, y, w, h: four integers defining the rectangular ROI in the original panchro image. (x, y) is the top-left corner, and (w, h) are the dimensions of the rectangle. im1: path to the panchro reference image clr: path to the xs (multispectral, ie color) reference image do_offset (optional, default: False): boolean flag to decide wether the x, y coordinates of points in the ply file will be translated or not (translated to be close to 0, to avoid precision loss due to huge numbers) """ print "\nComputing point cloud..." # output files crop_ref = '%s/roi_ref.tif' % out_dir cloud = '%s/cloud.ply' % out_dir if not os.path.exists(out_dir): os.makedirs(out_dir) # ensure that the coordinates of the ROI are multiples of the zoom factor, # to avoid bad registration of tiles due to rounding problems. z = cfg['subsampling_factor'] x, y, w, h = common.round_roi_to_nearest_multiple(z, x, y, w, h) # build the matrix of the zoom + translation transformation if cfg['full_img'] and z == 1: trans = None else: A = common.matrix_translation(-x, -y) f = 1.0/z Z = np.diag([f, f, 1]) A = np.dot(Z, A) trans = '%s/trans.txt' % out_dir np.savetxt(trans, A) # compute offset if do_offset: r = rpc_model.RPCModel(rpc1) lat = r.latOff lon = r.lonOff off_x, off_y = geographiclib.geodetic_to_utm(lat, lon)[0:2] else: off_x, off_y = 0, 0 # crop the ROI in ref image, then zoom if cfg['full_img'] and z == 1: crop_ref = im1 else: if z == 1: common.image_crop_TIFF(im1, x, y, w, h, crop_ref) else: # gdal is used for the zoom because it handles BigTIFF files, and # before the zoom out the image may be that big tmp_crop = common.image_crop_TIFF(im1, x, y, w, h) common.image_zoom_gdal(tmp_crop, z, crop_ref, w, h) if cfg['color_ply']: crop_color = '%s/roi_color_ref.tif' % out_dir if clr is not None: print 'colorizing...' triangulation.colorize(crop_ref, clr, x, y, z, crop_color) elif common.image_pix_dim_tiffinfo(crop_ref) == 4: print 'the image is pansharpened fusioned' tmp = common.rgbi_to_rgb(crop_ref, out=None, tilewise=True) common.image_qauto(tmp, crop_color, tilewise=False) else: print 'no color data' common.image_qauto(crop_ref, crop_color, tilewise=False) else: crop_color = '' triangulation.compute_point_cloud(cloud, height_map, rpc1, trans, crop_color, off_x, off_y) common.garbage_cleanup()