def test_get_compare_histogram(self):
     test_distribution_one = ProbabilityDistribution(
         self._probability_outcome_factory, {
             1: 2,
             2: 3,
             3: 6,
             4: 1,
             5: 1
         })
     test_distribution_two = ProbabilityDistribution(
         self._probability_outcome_factory, {
             0: 2,
             1: 1,
             2: 3,
             3: 6,
             4: 2
         })
     image_path = get_image_path(
         "TestProbabilityDistribution_test_get_compare_histogram.tiff", )
     image = test_distribution_one.get_compare_histogram(
         test_distribution_two)
     expected_image = Image.open(image_path)
     self.assertEqual(
         pil_image_to_byte_array.image_to_byte_array(expected_image),
         pil_image_to_byte_array.image_to_byte_array(image),
     )
 def test_probability_distribution_or(self):
     test_distribution_d2_less_one = ProbabilityDistribution(
         self._probability_outcome_factory, {
             0: 1,
             1: 1
         })
     test_distribution = test_distribution_d2_less_one.__or__(
         test_distribution_d2_less_one)
     self.assertEqual({0: 1, 1: 3}, test_distribution.get_result_map())
 def test_probability_distribution_not_operator(self):
     test_distribution_d4_less_one = ProbabilityDistribution(
         self._probability_outcome_factory, {
             0: 1,
             1: 1,
             2: 1,
             3: 1
         })
     test_distribution = test_distribution_d4_less_one.not_operator()
     self.assertEqual({0: 3, 1: 1}, test_distribution.get_result_map())
 def setUp(self) -> None:
     self._probability_outcome_factory = ProbabilityOutcomeFactory()
     self._test_distribution_d4 = ProbabilityDistribution(
         self._probability_outcome_factory, {
             1: 1,
             2: 1,
             3: 1,
             4: 1
         })
     self._test_distribution_2 = ProbabilityDistribution(
         self._probability_outcome_factory, {2: 1})
 def test_get_at_most_histogram(self):
     test_distribution = ProbabilityDistribution(
         self._probability_outcome_factory, {
             1: 1,
             2: 3,
             3: 6,
             4: 1
         })
     image_path = get_image_path(
         "TestProbabilityDistribution_test_get_at_most_histogram.tiff", )
     image = test_distribution.get_at_most_histogram()
     expected_image = Image.open(image_path)
     self.assertEqual(
         pil_image_to_byte_array.image_to_byte_array(expected_image),
         pil_image_to_byte_array.image_to_byte_array(image),
     )
 def test_probability_distribution_and(self):
     test_distribution_d2_less_one = ProbabilityDistribution(
         self._probability_outcome_factory, {
             0: 1,
             1: 1
         })
     test_distribution = self._test_distribution_d4.__and__(
         test_distribution_d2_less_one)
     self.assertEqual({0: 4, 1: 4}, test_distribution.get_result_map())
 def test_repr(self):
     test_distribution = ProbabilityDistribution(
         self._probability_outcome_factory, {
             1: 2,
             2: 3,
             3: 16,
             4: 1
         })
     self.assertEqual(
         "ProbabilityDistribution, result_map={ProbabilityOutcome: value=1, constraint_set=ConstraintSet: {"
         "NullConstraint}: 2, ProbabilityOutcome: value=2, constraint_set=ConstraintSet: {NullConstraint}: 3, "
         "ProbabilityOutcome: value=3, constraint_set=ConstraintSet: {NullConstraint}: 16, ProbabilityOutcome: "
         "value=4, constraint_set=ConstraintSet: {NullConstraint}: 1}",
         repr(test_distribution),
     )
 def test_probability_distribution_abs(self):
     test_distribution = ProbabilityDistribution(
         self._probability_outcome_factory, {
             -2: 2,
             -1: 1,
             0: 1,
             1: 1,
             2: 3
         })
     abs_test_distribution = abs(test_distribution)
     self.assertEqual({
         0: 1,
         1: 2,
         2: 5
     }, abs_test_distribution.get_result_map())
Exemple #9
0
 def create(
     self,
     result_map: Optional[Union[Dict[IProbabilityOutcome, int], Dict[int, int]]] = None,
 ) -> IProbabilityDistribution:
     return ProbabilityDistribution(self._probability_outcome_factory, result_map)
class TestProbabilityDistribution(TestCase):
    def setUp(self) -> None:
        self._probability_outcome_factory = ProbabilityOutcomeFactory()
        self._test_distribution_d4 = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 1,
                2: 1,
                3: 1,
                4: 1
            })
        self._test_distribution_2 = ProbabilityDistribution(
            self._probability_outcome_factory, {2: 1})

    def test_probability_distribution_get_result_map(self):
        self.assertEqual({
            1: 1,
            2: 1,
            3: 1,
            4: 1
        }, self._test_distribution_d4.get_result_map())

    def test_probability_distribution_get_dict_form(self):
        self.assertEqual(
            {
                1: 0.25,
                2: 0.25,
                3: 0.25,
                4: 0.25
            },
            self._test_distribution_d4.get_dict_form(),
        )

    def test_probability_distribution_add(self):
        test_distribution_one = self._test_distribution_d4 + self._test_distribution_2
        test_distribution_two = self._test_distribution_d4 + self._test_distribution_d4
        self.assertEqual({
            3: 1,
            4: 1,
            5: 1,
            6: 1
        }, test_distribution_one.get_result_map())
        self.assertEqual(
            {
                2: 1,
                3: 2,
                4: 3,
                5: 4,
                6: 3,
                7: 2,
                8: 1
            },
            test_distribution_two.get_result_map(),
        )

    def test_probability_distribution_add_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 + test_type

    def test_probability_distribution_sub(self):
        test_distribution_one = self._test_distribution_d4 - self._test_distribution_2
        test_distribution_two = self._test_distribution_d4 - self._test_distribution_d4
        self.assertEqual({
            -1: 1,
            0: 1,
            1: 1,
            2: 1
        }, test_distribution_one.get_result_map())
        self.assertEqual(
            {
                -3: 1,
                -2: 2,
                -1: 3,
                0: 4,
                1: 3,
                2: 2,
                3: 1
            },
            test_distribution_two.get_result_map(),
        )

    def test_probability_distribution_sub_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 - test_type

    def test_probability_distribution_mul(self):
        test_distribution_one = self._test_distribution_d4 * self._test_distribution_2
        test_distribution_two = self._test_distribution_d4 * self._test_distribution_d4
        self.assertEqual({
            2: 1,
            4: 1,
            6: 1,
            8: 1
        }, test_distribution_one.get_result_map())
        self.assertEqual(
            {
                1: 1,
                2: 2,
                3: 2,
                4: 3,
                6: 2,
                8: 2,
                9: 1,
                12: 2,
                16: 1
            },
            test_distribution_two.get_result_map(),
        )

    def test_probability_distribution_mul_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 * test_type

    def test_probability_distribution_floordiv(self):
        test_distribution_one = self._test_distribution_d4 // self._test_distribution_2
        test_distribution_two = self._test_distribution_d4 // self._test_distribution_d4
        self.assertEqual({
            0: 1,
            1: 2,
            2: 1
        }, test_distribution_one.get_result_map())
        self.assertEqual({
            0: 6,
            1: 6,
            2: 2,
            3: 1,
            4: 1
        }, test_distribution_two.get_result_map())

    def test_probability_distribution_floordiv_non_probability_distribution(
            self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 // test_type

    def test_probability_distribution_max_operator(self):
        test_distribution_one = self._test_distribution_d4.max_operator(
            self._test_distribution_2)
        test_distribution_two = self._test_distribution_d4.max_operator(
            self._test_distribution_d4)
        self.assertEqual({
            2: 2,
            3: 1,
            4: 1
        }, test_distribution_one.get_result_map())
        self.assertEqual({
            1: 1,
            2: 3,
            3: 5,
            4: 7
        }, test_distribution_two.get_result_map())

    def test_probability_distribution_max_operator_non_probability_distribution(
            self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4.max_operator(test_type)

    def test_probability_distribution_min_operator(self):
        test_distribution_one = self._test_distribution_d4.min_operator(
            self._test_distribution_2)
        test_distribution_two = self._test_distribution_d4.min_operator(
            self._test_distribution_d4)
        self.assertEqual({1: 1, 2: 3}, test_distribution_one.get_result_map())
        self.assertEqual({
            1: 7,
            2: 5,
            3: 3,
            4: 1
        }, test_distribution_two.get_result_map())

    def test_probability_distribution_min_operator_non_probability_distribution(
            self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4.min_operator(test_type)

    def test_probability_distribution_max(self):
        test_distribution_one = self._test_distribution_d4 * self._test_distribution_2
        test_distribution_two = self._test_distribution_d4 - self._test_distribution_d4
        self.assertEqual(8, test_distribution_one.max())
        self.assertEqual(3, test_distribution_two.max())

    def test_probability_distribution_min(self):
        test_distribution_one = self._test_distribution_d4 * self._test_distribution_d4
        test_distribution_two = self._test_distribution_d4 - self._test_distribution_d4
        self.assertEqual(1, test_distribution_one.min())
        self.assertEqual(-3, test_distribution_two.min())

    def test_probability_distribution_contains_zero(self):
        test_distribution_one = self._test_distribution_d4 * self._test_distribution_d4
        test_distribution_two = self._test_distribution_d4 - self._test_distribution_d4
        self.assertEqual(False, test_distribution_one.contains_zero())
        self.assertEqual(True, test_distribution_two.contains_zero())

    def test_probability_distribution_average(self):
        test_distribution_one = self._test_distribution_d4 + self._test_distribution_d4
        test_distribution_two = self._test_distribution_d4 - self._test_distribution_d4
        self.assertAlmostEqual(5, test_distribution_one.average(), delta=1e8)
        self.assertAlmostEqual(0, test_distribution_two.average(), delta=1e8)

    def test_probability_distribution_at_least(self):
        test_distribution_one = self._test_distribution_d4
        test_distribution_two = self._test_distribution_d4 - self._test_distribution_d4

        least_one = test_distribution_one.at_least()
        least_two = test_distribution_two.at_least()

        self.assertAlmostEqual(1, least_one[1], delta=1e8)
        self.assertAlmostEqual(0.75, least_one[2], delta=1e8)
        self.assertAlmostEqual(0.5, least_one[3], delta=1e8)
        self.assertAlmostEqual(0.25, least_one[4], delta=1e8)

        self.assertAlmostEqual(1, least_two[-3], delta=1e8)
        self.assertAlmostEqual(6 / 7, least_two[-2], delta=1e8)
        self.assertAlmostEqual(5 / 7, least_two[-1], delta=1e8)
        self.assertAlmostEqual(4 / 7, least_two[0], delta=1e8)
        self.assertAlmostEqual(3 / 7, least_two[1], delta=1e8)
        self.assertAlmostEqual(2 / 7, least_two[2], delta=1e8)
        self.assertAlmostEqual(1 / 7, least_two[3], delta=1e8)

    def test_probability_distribution_at_most(self):
        test_distribution_one = self._test_distribution_d4
        test_distribution_two = self._test_distribution_d4 - self._test_distribution_d4

        most_one = test_distribution_one.at_most()
        most_two = test_distribution_two.at_most()

        self.assertAlmostEqual(0.25, most_one[1], delta=1e8)
        self.assertAlmostEqual(0.5, most_one[2], delta=1e8)
        self.assertAlmostEqual(0.75, most_one[3], delta=1e8)
        self.assertAlmostEqual(1, most_one[4], delta=1e8)

        self.assertAlmostEqual(1 / 7, most_two[-3], delta=1e8)
        self.assertAlmostEqual(2 / 7, most_two[-2], delta=1e8)
        self.assertAlmostEqual(3 / 7, most_two[-1], delta=1e8)
        self.assertAlmostEqual(4 / 7, most_two[0], delta=1e8)
        self.assertAlmostEqual(5 / 7, most_two[1], delta=1e8)
        self.assertAlmostEqual(6 / 7, most_two[2], delta=1e8)
        self.assertAlmostEqual(1, most_two[3], delta=1e8)

    def test_probability_distribution_eq(self):
        test_distribution = self._test_distribution_d4.__equal__(
            self._test_distribution_d4)
        self.assertEqual({0: 12, 1: 4}, test_distribution.get_result_map())

    def test_probability_distribution_eq_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4.__equal__(test_type)

    def test_probability_distribution_ne(self):
        test_distribution = self._test_distribution_d4.__not_equal__(
            self._test_distribution_d4)
        self.assertEqual({0: 4, 1: 12}, test_distribution.get_result_map())

    def test_probability_distribution_ne_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4.__not_equal__(test_type)

    def test_probability_distribution_lt(self):
        test_distribution = self._test_distribution_d4 < self._test_distribution_d4
        self.assertEqual({0: 10, 1: 6}, test_distribution.get_result_map())

    def test_probability_distribution_lt_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 < test_type

    def test_probability_distribution_le(self):
        test_distribution = self._test_distribution_d4 <= self._test_distribution_d4
        self.assertEqual({0: 6, 1: 10}, test_distribution.get_result_map())

    def test_probability_distribution_le_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 <= test_type

    def test_probability_distribution_gt(self):
        test_distribution = self._test_distribution_d4 > self._test_distribution_d4
        self.assertEqual({0: 10, 1: 6}, test_distribution.get_result_map())

    def test_probability_distribution_gt_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 > test_type

    def test_probability_distribution_ge(self):
        test_distribution = self._test_distribution_d4 >= self._test_distribution_d4
        self.assertEqual({0: 6, 1: 10}, test_distribution.get_result_map())

    def test_probability_distribution_ge_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4 >= test_type

    def test_probability_distribution_not_operator(self):
        test_distribution_d4_less_one = ProbabilityDistribution(
            self._probability_outcome_factory, {
                0: 1,
                1: 1,
                2: 1,
                3: 1
            })
        test_distribution = test_distribution_d4_less_one.not_operator()
        self.assertEqual({0: 3, 1: 1}, test_distribution.get_result_map())

    def test_probability_distribution_and(self):
        test_distribution_d2_less_one = ProbabilityDistribution(
            self._probability_outcome_factory, {
                0: 1,
                1: 1
            })
        test_distribution = self._test_distribution_d4.__and__(
            test_distribution_d2_less_one)
        self.assertEqual({0: 4, 1: 4}, test_distribution.get_result_map())

    def test_probability_distribution_and_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4.__and__(test_type)

    def test_probability_distribution_or(self):
        test_distribution_d2_less_one = ProbabilityDistribution(
            self._probability_outcome_factory, {
                0: 1,
                1: 1
            })
        test_distribution = test_distribution_d2_less_one.__or__(
            test_distribution_d2_less_one)
        self.assertEqual({0: 1, 1: 3}, test_distribution.get_result_map())

    def test_probability_distribution_or_non_probability_distribution(self):
        non_probability_distribution = {
            "int": 1,
            "str": "apple",
            "list": [1, 2],
            "set": {1, 2},
            "dict": {
                1: 2,
                3: 5
            }
        }
        for name, test_type in non_probability_distribution.items():
            with self.subTest(name):
                with self.assertRaises(TypeError):
                    _ = self._test_distribution_d4.__or__(test_type)

    def test_probability_distribution_abs(self):
        test_distribution = ProbabilityDistribution(
            self._probability_outcome_factory, {
                -2: 2,
                -1: 1,
                0: 1,
                1: 1,
                2: 3
            })
        abs_test_distribution = abs(test_distribution)
        self.assertEqual({
            0: 1,
            1: 2,
            2: 5
        }, abs_test_distribution.get_result_map())

    def test_get_histogram(self):
        test_distribution = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 1,
                2: 3,
                3: 6,
                4: 1
            })

        image_path = get_image_path(
            "TestProbabilityDistribution_test_get_histogram.tiff", )
        image = test_distribution.get_histogram()
        expected_image = Image.open(image_path)
        self.assertEqual(
            pil_image_to_byte_array.image_to_byte_array(expected_image),
            pil_image_to_byte_array.image_to_byte_array(image),
        )

    def test_get_at_least_histogram(self):
        test_distribution = ProbabilityDistribution(
            self._probability_outcome_factory, {
                2: 1,
                3: 2,
                4: 4,
                5: 8,
                6: 4,
                7: 2,
                8: 1
            })
        image_path = get_image_path(
            "TestProbabilityDistribution_test_get_at_least_histogram.tiff", )
        image = test_distribution.get_at_least_histogram()
        expected_image = Image.open(image_path)
        self.assertEqual(
            pil_image_to_byte_array.image_to_byte_array(expected_image),
            pil_image_to_byte_array.image_to_byte_array(image),
        )

    def test_get_at_most_histogram(self):
        test_distribution = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 1,
                2: 3,
                3: 6,
                4: 1
            })
        image_path = get_image_path(
            "TestProbabilityDistribution_test_get_at_most_histogram.tiff", )
        image = test_distribution.get_at_most_histogram()
        expected_image = Image.open(image_path)
        self.assertEqual(
            pil_image_to_byte_array.image_to_byte_array(expected_image),
            pil_image_to_byte_array.image_to_byte_array(image),
        )

    def test_get_compare_histogram(self):
        test_distribution_one = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 2,
                2: 3,
                3: 6,
                4: 1,
                5: 1
            })
        test_distribution_two = ProbabilityDistribution(
            self._probability_outcome_factory, {
                0: 2,
                1: 1,
                2: 3,
                3: 6,
                4: 2
            })
        image_path = get_image_path(
            "TestProbabilityDistribution_test_get_compare_histogram.tiff", )
        image = test_distribution_one.get_compare_histogram(
            test_distribution_two)
        expected_image = Image.open(image_path)
        self.assertEqual(
            pil_image_to_byte_array.image_to_byte_array(expected_image),
            pil_image_to_byte_array.image_to_byte_array(image),
        )

    def test_get_compare_at_least_histogram(self):
        test_distribution_one = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 2,
                2: 3,
                3: 6,
                4: 1
            })
        test_distribution_two = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 1,
                2: 3,
                3: 6,
                4: 7
            })
        image_path = get_image_path(
            "TestProbabilityDistribution_test_get_compare_at_least.tiff", )
        image = test_distribution_one.get_compare_at_least(
            test_distribution_two, "option 1", "option 2")
        expected_image = Image.open(image_path)
        self.assertEqual(
            pil_image_to_byte_array.image_to_byte_array(expected_image),
            pil_image_to_byte_array.image_to_byte_array(image),
        )

    def test_get_compare_at_most_histogram(self):
        test_distribution_one = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 2,
                2: 3,
                3: 16,
                4: 1
            })
        test_distribution_two = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 1,
                2: 3,
                3: 6,
                4: 2
            })
        image_path = get_image_path(
            "TestProbabilityDistribution_test_get_compare_at_most.tiff", )
        image = test_distribution_one.get_compare_at_most(
            test_distribution_two, "option a", "option b")
        expected_image = Image.open(image_path)
        self.assertEqual(
            pil_image_to_byte_array.image_to_byte_array(expected_image),
            pil_image_to_byte_array.image_to_byte_array(image),
        )

    def test_get_compare(self):
        test_distribution_one = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 2,
                2: 3,
                3: 16,
                4: 1
            })
        test_distribution_two = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 1,
                2: 3,
                3: 6,
                4: 2
            })
        image_path = get_image_path(
            "TestProbabilityDistribution_test_get_compare.tiff", )
        image = test_distribution_one.get_compare(test_distribution_two,
                                                  "option a", "option b")
        expected_image = Image.open(image_path)
        self.assertEqual(
            pil_image_to_byte_array.image_to_byte_array(expected_image),
            pil_image_to_byte_array.image_to_byte_array(image),
        )

    def test_str(self):
        test_distribution = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 2,
                2: 3,
                3: 16,
                4: 1
            })
        self.assertEqual(
            "ProbabilityDistribution, result_map={ProbabilityOutcome: value=1, constraint_set=ConstraintSet: {"
            "NullConstraint}: 2, ProbabilityOutcome: value=2, constraint_set=ConstraintSet: {NullConstraint}: 3, "
            "ProbabilityOutcome: value=3, constraint_set=ConstraintSet: {NullConstraint}: 16, ProbabilityOutcome: "
            "value=4, constraint_set=ConstraintSet: {NullConstraint}: 1}",
            str(test_distribution),
        )

    def test_repr(self):
        test_distribution = ProbabilityDistribution(
            self._probability_outcome_factory, {
                1: 2,
                2: 3,
                3: 16,
                4: 1
            })
        self.assertEqual(
            "ProbabilityDistribution, result_map={ProbabilityOutcome: value=1, constraint_set=ConstraintSet: {"
            "NullConstraint}: 2, ProbabilityOutcome: value=2, constraint_set=ConstraintSet: {NullConstraint}: 3, "
            "ProbabilityOutcome: value=3, constraint_set=ConstraintSet: {NullConstraint}: 16, ProbabilityOutcome: "
            "value=4, constraint_set=ConstraintSet: {NullConstraint}: 1}",
            repr(test_distribution),
        )