def Inceptionv3_module3(self, net,name):
        with tf.variable_scope(name) as scope:

            with tf.variable_scope('branch1x1'):
                branch1x1 = tl.conv2d(net, 320, (1, 1))
                branch1x1 = tl.bn_new(branch1x1)
                branch1x1 = tl.relu(branch1x1)
            with tf.variable_scope('branch3x3'):
                branch3x3 = tl.conv2d(net, 384, (1, 1),name='branch3x3_0')
                branch3x3 = tl.bn_new(branch3x3)
                branch3x3 = tl.relu(branch3x3)
                branch3x3 = tf.concat([tl.conv2d(branch3x3, 384, (1, 3),name='branch3x3_1'),
                                       tl.conv2d(branch3x3, 384, (3, 1),name='branch3x3_2')],3)
            with tf.variable_scope('branch3x3dbl'):
                branch3x3dbl = tl.conv2d(net, 448, (1, 1),name='branch3x3dbl_1')
                branch3x3dbl = tl.bn_new(branch3x3dbl,name='branch3x3dbl_1')
                branch3x3dbl = tl.relu(branch3x3dbl)
                branch3x3dbl = tl.conv2d(branch3x3dbl, 384, (3, 3),name='branch3x3dbl_2')
                branch3x3dbl = tl.bn_new(branch3x3dbl,name='branch3x3dbl_2')
                branch3x3dbl = tl.relu(branch3x3dbl)
                branch3x3dbl = tf.concat([tl.conv2d(branch3x3dbl, 384, (1, 3),name='branch3x3dbl_3'),
                                          tl.conv2d(branch3x3dbl, 384, (3, 1),name='branch3x3dbl_4')],3)
            with tf.variable_scope('branch_pool'):
                branch_pool = tl.avg_pool2d(net, (3, 3))
                branch_pool = tl.conv2d(branch_pool, 192, (1, 1))
                branch_pool = tl.bn_new(branch_pool)
                branch_pool = tl.relu(branch_pool)
                net = tf.concat( [branch1x1, branch3x3, branch3x3dbl, branch_pool],3)
        return net
 def MobileNet_separable_2d(self, net, out_channel, stride = (1, 1), name='separable'):
     width_multiplier=1
     net = tl.depthwise_conv2d(net, width_multiplier, (3, 3), stride, name = name + 'dep')
     net = tl.bn_new(net, name = name + 'dep')
     net = tl.relu(net)
     net = tl.conv2d(net, out_channel, (1,1), stride, name = name + 'conv')
     net = tl.bn_new(net, name = name + 'conv')
     net = tl.relu(net)
     return net
 def _conv_layer(self, input, out_channels, conv_ksize, conv_stride_size, pool_ksize, pool_stride_size, name):
     with tf.variable_scope(name) as scope:
         lconv = tl.conv2d(input, out_channels, conv_ksize, conv_stride_size, name='conv')
         lpool = tl.max_pool2d(lconv, pool_ksize, pool_stride_size, name='pool')
         lbn = tl.bn_new(lpool)
         lrelu = tl.relu(lbn)
         return lrelu
    def inference_MobileNet(self, im):
        n=6
        num_classes=10
        width_multiplier=1
        net = tl.conv2d(im, round(32 * width_multiplier), (3, 3), (2, 2), padding='SAME', name='conv_1')
        net = tl.bn_new(net, name='conv_1')
        net = tl.relu(net)
        net = self.MobileNet_separable_2d(net, 32, name ='sep1')
        net = self.MobileNet_separable_2d(net, 64, (2, 2), name='sep2')
        net = self.MobileNet_separable_2d(net, 128, name ='sep3')
        net = self.MobileNet_separable_2d(net, 128, (2, 2), name='sep4')
        net = self.MobileNet_separable_2d(net, 256, name ='sep5')
        net = self.MobileNet_separable_2d(net, 256, (2, 2), name='sep6')
        net = self.MobileNet_separable_2d(net, 512, name ='sep7')

        for i in range(n):
            net = self.MobileNet_separable_2d(net, 512, name ='sep' + str(i + 8))

        net = self.MobileNet_separable_2d(net, 512, (2, 2), name ='sep' + str(n + 9))
        net = self.MobileNet_separable_2d(net, 1024, name='sep' + str(n + 10))

        #shape = net.get_shape()
        #net = tl.avg_pool2d(net, shape[1:3], name='avg_pool')
        net = tf.reshape(net, [self.batch_size, -1])
        logits = tl.fc(net, num_classes, name='fc')
        return logits
 def residual_block(self,x, n_out, subsample, name):
     with tf.variable_scope(name+'conv_1')as scope:
         if subsample:
             y = tl.conv2d(x, n_out, (3,3), (2,2), padding='SAME',name=name+'conv_1')
             shortcut = tl.conv2d(x, n_out, (3,3), (2,2), padding='SAME',name=name +'shortcut')
         else:
             y = tl.conv2d(x, n_out, (3,3), (1,1), padding='SAME', name=name+'conv_1')
             shortcut = tl.identity(x)
         y = tl.bn_new(y)
         y = tl.relu(y)
     with tf.variable_scope(name+'conv_2')as scope:
         y = tl.conv2d(y, n_out, (3,3), (1,1), padding='SAME', name=name+'conv_2')
         y = tl.bn_new(y)
         y = y + shortcut
         y = tf.nn.relu(y, name='relu_2')
     return y
    def Inceptionv3_module1(self, net, kernel_size,name):
        with tf.variable_scope(name):
            with tf.variable_scope('branch1x1') as scope:

                branch1x1 = tl.conv2d(net, 64, (1, 1))
                branch1x1 = tl.bn_new(branch1x1)
                branch1x1 = tl.relu(branch1x1)
            with tf.variable_scope('branch5x5') as scope:

                branch5x5 = tl.conv2d(net, 48, (1, 1),name='branch5x5_1')
                branch5x5 = tl.bn_new(branch5x5,name='branch5x5_1')
                branch5x5 = tl.relu(branch5x5)
                branch5x5 = tl.conv2d(branch5x5, 64, kernel_size,name='branch5x5_2')
                branch5x5 = tl.bn_new(branch5x5,name='branch5x5_2')
                branch5x5 = tl.relu(branch5x5)
            with tf.variable_scope('branch3x3dbl') as scope:

                branch3x3dbl = tl.conv2d(net, 64, (1, 1),name='branch3x3dbl_1')
                branch3x3dbl = tl.bn_new(branch3x3dbl,name='branch3x3dbl_1')
                branch3x3dbl = tl.relu(branch3x3dbl)
                branch3x3dbl = tl.conv2d(branch3x3dbl, 96, (3, 3),name='branch3x3dbl_2')
                branch3x3dbl = tl.bn_new(branch3x3dbl,name='branch3x3dbl_2')
                branch3x3dbl = tl.relu(branch3x3dbl)
                branch3x3dbl = tl.conv2d(branch3x3dbl, 96, (3, 3),name='branch3x3dbl_3')
                branch3x3dbl = tl.bn_new(branch3x3dbl,name='branch3x3dbl_3')
                branch3x3dbl = tl.relu(branch3x3dbl)
            with tf.variable_scope('branch_pool') as scope:

                branch_pool = tl.avg_pool2d(net, (3, 3))
                branch_pool = tl.conv2d(branch_pool, 32, (1, 1))
                branch_pool = tl.bn_new(branch_pool)
                branch_pool = tl.relu(branch_pool)
                net = tf.concat([branch1x1, branch5x5, branch3x3dbl, branch_pool],3)

        return net
    def Inceptionv3_module2(self, net,name):
        with tf.variable_scope(name) as scope:

            with tf.variable_scope('branch1x1'):
                branch1x1 = tl.conv2d(net, 192, (1, 1))
                branch1x1 = tl.bn_new(branch1x1)
                branch1x1 = tl.relu(branch1x1)
            with tf.variable_scope('branch7x7'):
                branch7x7 = tl.conv2d(net, 192, (1, 1),name='branch7x7_1')
                branch7x7 = tl.bn_new(branch7x7,name='branch7x7_1')
                branch7x7 = tl.relu(branch7x7)
                branch7x7 = tl.conv2d(branch7x7, 192, (1, 7),name='branch7x7_2')
                branch7x7 = tl.bn_new(branch7x7,name='branch7x7_2')
                branch7x7 = tl.relu(branch7x7)
                branch7x7 = tl.conv2d(branch7x7, 192, (7, 1),name='branch7x7_3')
                branch7x7 = tl.bn_new(branch7x7,name='branch7x7_3')
                branch7x7 = tl.relu(branch7x7)
            with tf.variable_scope('branch7x7dbl'):
                branch7x7dbl = tl.conv2d(net, 192, (1, 1),name='branch7x7dbl_1')
                branch7x7dbl = tl.bn_new(branch7x7dbl,name='branch7x7dbl_1')
                branch7x7dbl = tl.relu(branch7x7dbl)
                branch7x7dbl = tl.conv2d(branch7x7dbl, 192, (7, 1),name='branch7x7dbl_2')
                branch7x7dbl = tl.bn_new(branch7x7dbl,name='branch7x7dbl_2')
                branch7x7dbl = tl.relu(branch7x7dbl)
                branch7x7dbl = tl.conv2d(branch7x7dbl, 192, (1, 7),name='branch7x7dbl_3')
                branch7x7dbl = tl.bn_new(branch7x7dbl,name='branch7x7dbl_3')
                branch7x7dbl = tl.relu(branch7x7dbl)
                branch7x7dbl = tl.conv2d(branch7x7dbl, 192, (7, 1),name='branch7x7dbl_4')
                branch7x7dbl = tl.bn_new(branch7x7dbl,name='branch7x7dbl_4')
                branch7x7dbl = tl.relu(branch7x7dbl)
                branch7x7dbl = tl.conv2d(branch7x7dbl, 192, (1, 7),name='branch7x7dbl_5')
                branch7x7dbl = tl.bn_new(branch7x7dbl,name='branch7x7dbl_5')
                branch7x7dbl = tl.relu(branch7x7dbl)
            with tf.variable_scope('branch_pool'):
                branch_pool = tl.avg_pool2d(net, (3, 3))
                branch_pool = tl.conv2d(branch_pool, 192, (1, 1))
                branch_pool = tl.bn_new(branch_pool)
                branch_pool = tl.relu(branch_pool)
                net = tf.concat([branch1x1, branch7x7, branch7x7dbl, branch_pool],3)
        return net
    def inference_ResNet(self, im):
        n=5
        n_class=10
        with tf.variable_scope('conv_0') as scope:
            y = tl.conv2d(im, 16, (3,3), (1,1), padding='SAME', name='conv_init')
            y = tl.bn_new(y)
            y = tl.relu(y)
        y = self.residual_group(y, 16, n, False,  name='group_1')
        y = self.residual_group(y, 32, n, True, name='group_2')
        y = self.residual_group(y, 64, n, True, name='group_3')
            #print(y.get_shape())
        #shape = y.get_shape()
        #y = tl.avg_pool2d(y, shape[1:3], (1, 1), padding='VALID', name='avg_pool')
        y = tf.reshape(y, [self.batch_size, -1])
        y = tl.fc(y, n_class, name='fc')

        return y
    def inference_Inceptionv3(self,im):
        n=3
        # n_class=10
        n_class=101
        with tf.variable_scope('Inceptionv3') as scope:
            y = tl.conv2d(im, 32, (3, 3), (2, 2), name='conv0')
            y = tl.bn_new(y,name='conv1')
            y = tl.relu(y)
            y = tl.conv2d(y, 32, (3, 3), (1, 1), name='conv1')
            y = tl.bn_new(y,name='conv2')
            y = tl.relu(y)
            y = tl.conv2d(y, 64, (3, 3), (1, 1), padding='SAME', name='conv2')
            y = tl.bn_new(y,name='conv3')
            y = tl.relu(y)
            y = tl.max_pool2d(y, (3, 3), (2, 2), name='pool1')
            y = tl.bn_new(y,name='conv4')
            y = tl.relu(y)
            # 73 x 73 x 64
            y = tl.conv2d(y, 80, (3, 3), (1, 1), name='conv3')
            y = tl.bn_new(y,name='conv5')
            y = tl.relu(y)
            # 73 x 73 x 80.
            y = tl.conv2d(y, 192, (3, 3), (2, 2), name='conv4')
            y = tl.bn_new(y,name='conv6')
            y = tl.relu(y)
            # 71 x 71 x 192.
            y = tl.max_pool2d(y, (3, 3), (2, 2), name='pool2')
            # 35 x 35 x 192.
            for i in range(n - 1):
                y = self.Inceptionv3_module1(y, (5, 5),name='mixed_35x35x256a'+str(i))
            for i in range(n - 1):
                y = self.Inceptionv3_module2(y,name='mixed_17x17x768e'+str(i))
            for i in range(n - 1):
                y = self.Inceptionv3_module3(y,name='mixed_8x8x2048a'+str(i))

            shape = y.get_shape()
            y = tl.avg_pool2d(y, shape[1:3], padding='VALID', name='pool')
            # 1 x 1 x 2048
            y = tl.dropout(y, self.keep_prob)
            y = tl.flatten(y)
            # 2048
            logits = tl.fc(y, n_class, name='logits')
            return logits