Exemple #1
0
def test_expand():
    X = torch.randn(2, 2, 4, 4).cuda().double()
    zeros = torch.zeros(2, 2, 4, 4).cuda().double()
    r1, r2 = cfft.rfft2(X)
    c1, c2 = cfft.fft2(X, zeros)
    assert np.allclose(cfft.expand(r1).cpu().numpy(), c1.cpu().numpy())
    assert np.allclose(
        cfft.expand(r2, imag=True).cpu().numpy(),
        c2.cpu().numpy())
    r1, r2 = cfft.rfft3(X)
    c1, c2 = cfft.fft3(X, zeros)
    assert np.allclose(cfft.expand(r1).cpu().numpy(), c1.cpu().numpy())
    assert np.allclose(
        cfft.expand(r2, imag=True).cpu().numpy(),
        c2.cpu().numpy())

    X = torch.randn(2, 2, 5, 5).cuda().double()
    zeros = torch.zeros(2, 2, 5, 5).cuda().double()
    r1, r2 = cfft.rfft3(X)
    c1, c2 = cfft.fft3(X, zeros)
    assert np.allclose(
        cfft.expand(r1, odd=True).cpu().numpy(),
        c1.cpu().numpy())
    assert np.allclose(
        cfft.expand(r2, imag=True, odd=True).cpu().numpy(),
        c2.cpu().numpy())
Exemple #2
0
 def forward(ctx, input, filter_height, filter_width): 
     ctx.save_for_backward(input) 
     y_spectral = fft.fft2(input) 
     y_spectral = _crop_spectrum(y_spectral) 
     y_spectral = _treat_corner_cases(y_spectral) 
     cropped = fft.ifft2(y_spectral) 
     return cropped.float()
 def forward(self, X_re, X_im):
     X_re, X_im = make_contiguous(X_re, X_im)
     k_re, k_im = fft2(X_re, X_im)
     if self.norm == 'ortho':
         N = np.sqrt(k_re.size(-1) * k_re.size(-2))
         k_re /= N
         k_im /= N
     return k_re, k_im
Exemple #4
0
 def backward(ctx, grad_output): 
     # Retrieve original tensor shape for _pad_spectrum
     orig = ctx.saved_variables 
     orig_shape = orig[0].shape[3]
     
     z = fft.fft2(z) 
     z = _remove_redundancy(z) 
     z = _pad_spectrum(z, orig_shape) 
     z = _recover_map(z) 
     return Variable(z), None, None 
    def backward(self, grad_output_re, grad_output_im):
        grad_output_re, grad_output_im = make_contiguous(
            grad_output_re, grad_output_im)
        gi, gr = fft2(grad_output_im, grad_output_re)

        if self.norm == 'ortho':
            N = np.sqrt(gi.size(-1) * gi.size(-2))
            gi /= N
            gr /= N

        return gr, gi
Exemple #6
0
def run_fft(x, z):
    if torch.cuda.is_available():
        y1, y2 = cfft.fft2(x, z)
        x_np = x.cpu().numpy().squeeze()
        y_np = nfft.fft2(x_np)
        assert np.allclose(y1.cpu().numpy(), y_np.real)
        assert np.allclose(y2.cpu().numpy(), y_np.imag)

        # assert np.allclose(y1[1,0].cpu().numpy(), nfft.fft2(x_np[1,0]).real)

        x0, z0 = cfft.ifft2(y1, y2)
        x0_np = nfft.ifft2(y_np)
        assert np.allclose(x0.cpu().numpy(), x0_np.real)
        assert np.allclose(z0.cpu().numpy(), x0_np.imag)

    else:
        print("Cuda not available, cannot test.")
Exemple #7
0
import numpy as np
import torch
import pytorch_fft.fft as fft

from PIL import Image

im = np.array(Image.open('rome.jpg').convert('LA'), dtype=np.uint8)
#  Image.fromarray(im, mode='LA').save('newrome.png')

print('min: {}, max: {}'.format(np.min(im), np.max(im)))

im = torch.from_numpy(im).float().cuda()
im = im.permute(2, 0, 1).contiguous()
print(im.type())
print(im.size())

B_real, B_imag = fft.fft2(im, torch.zeros(*im.size()).cuda())
im, _ = fft.ifft2(B_real, torch.zeros(*im.size()).cuda())

im = im.permute(1, 2, 0).contiguous()
im = im.byte().cpu().numpy()
Image.fromarray(im, mode='LA').save('newrometorched.png')

print('min: {}, max: {}'.format(np.min(im), np.max(im)))
Exemple #8
0
import torch
import pytorch_fft.fft as fft
import numpy as np

from PIL import Image

imreal = torch.from_numpy(np.array(Image.open('rome.png').convert('LA'))).cuda()
Image.fromarray(imreal.cpu().numpy(), mode='LA').save('preimg.png')
imreal = imreal.unsqueeze(0).float()
imimag = torch.zeros(*imreal.size()).cuda()


fft_version = fft.fft2(imreal, imimag)[0]
newimreal, newimimag = fft.ifft2(fft_version, torch.zeros(*fft_version.size()).cuda())

def pre(im):
    #  im = im.abs().log()
    #  mini = torch.min(im)
    #  maxi = torch.max(im)
    #  im = 255 * (im - mini) / (maxi - mini)
    #  print(im.min())
    #  print(im.max())
    return im.byte()

real_img = pre(newimreal).cpu().numpy()
imag_img = pre(newimimag).cpu().numpy()

#  np.save('real_img.npy', real_img)
Image.fromarray(real_img.squeeze(), mode='LA').save('real_img.png')
#  Image.fromarray(imag_img.squeeze(), mode='LA').save('real_img.png')