Exemple #1
0
def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir):
    """
        Test to ensure that resuming from checkpoint works when going from GPUs- > CPU
    """
    model = BoringModel()
    trainer = Trainer(
        accelerator='ddp_spawn',
        plugins=[DDPShardedPlugin()],
        gpus=1,
        fast_dev_run=True,
    )

    trainer.fit(model)

    checkpoint_path = os.path.join(tmpdir, 'model.pt')
    trainer.save_checkpoint(checkpoint_path)

    model = BoringModel()

    trainer = Trainer(plugins=[DDPShardedPlugin()],
                      accelerator='ddp_cpu',
                      num_processes=2,
                      fast_dev_run=True,
                      resume_from_checkpoint=checkpoint_path)

    trainer.fit(model)
Exemple #2
0
def test_ddp_sharded_plugin_resume_from_checkpoint_downsize_gpus(tmpdir):
    """
        Test to ensure that resuming from checkpoint works when downsizing number of GPUS
    """
    model = BoringModel()
    trainer = Trainer(
        accelerator='ddp_spawn',
        plugins=[DDPShardedPlugin()],
        fast_dev_run=True,
        gpus=2,
    )

    trainer.fit(model)

    checkpoint_path = os.path.join(tmpdir, 'model.pt')
    trainer.save_checkpoint(checkpoint_path)

    model = BoringModel()

    trainer = Trainer(accelerator='ddp_spawn',
                      plugins=[DDPShardedPlugin()],
                      fast_dev_run=True,
                      gpus=1,
                      resume_from_checkpoint=checkpoint_path)

    trainer.fit(model)
Exemple #3
0
def test_ddp_choice_sharded_amp(tmpdir, ddp_backend, gpus, num_processes):
    """
        Test to ensure that plugin native amp plugin is correctly chosen when using sharded
    """
    class CB(Callback):
        def on_fit_start(self, trainer, pl_module):
            assert isinstance(trainer.accelerator_backend.ddp_plugin,
                              DDPShardedPlugin)
            assert isinstance(trainer.precision_connector.backend,
                              ShardedNativeAMPPlugin)
            raise SystemExit()

    model = BoringModel()
    trainer = Trainer(
        fast_dev_run=True,
        gpus=gpus,
        precision=16,
        num_processes=num_processes,
        accelerator=ddp_backend,
        plugins=[DDPShardedPlugin()],
        callbacks=[CB()],
    )

    with pytest.raises(SystemExit):
        trainer.fit(model)
Exemple #4
0
def test_ddp_sharded_plugin_correctness_one_gpu():
    plugin_parity_test(
        gpus=1,
        accelerator='ddp_spawn',
        plugin=DDPShardedPlugin(),
        model_cls=SeedTrainLoaderModel,
    )
Exemple #5
0
def test_ddp_sharded_plugin_correctness_amp_multi_gpu_ddp(tmpdir, args=None):
    plugin_parity_test(
        gpus=args.gpus,
        precision=args.precision,
        accelerator=args.accelerator,
        plugin=DDPShardedPlugin(),
        model_cls=SeedTrainLoaderModel,
    )
Exemple #6
0
def test_ddp_sharded_plugin_correctness_multi_gpu():
    plugin_parity_test(
        gpus=2,
        accelerator='ddp_spawn',
        plugin=DDPShardedPlugin(),
        model_cls=SeedTrainLoaderModel,
        max_percent_speed_diff=
        0.25,  # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers
    )
Exemple #7
0
def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir):
    """
        Ensures using multiple optimizers across multiple GPUs with manual optimization
    """
    plugin_parity_test(
        plugin=DDPShardedPlugin(),
        gpus=2,
        accelerator='ddp_spawn',
        model_cls=SeedTrainLoaderManualModel,
        max_percent_speed_diff=
        0.25,  # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers
    )
Exemple #8
0
def test_ddp_sharded_plugin_test_multigpu(tmpdir):
    """
        Test to ensure we can use test without fit
    """
    model = BoringModel()
    trainer = Trainer(
        accelerator='ddp_spawn',
        gpus=2,
        plugins=[DDPShardedPlugin()],
        fast_dev_run=True,
    )

    trainer.test(model)
Exemple #9
0
def test_ddp_sharded_plugin_test(tmpdir):
    """
        Test to ensure we can use test without fit
    """
    model = BoringModel()
    trainer = Trainer(
        accelerator='ddp_cpu',
        num_processes=2,
        plugins=[DDPShardedPlugin()],
        fast_dev_run=True,
    )

    trainer.test(model)
Exemple #10
0
def test_invalid_apex_sharded(tmpdir):
    """
        Test to ensure that we raise an error when we try to use apex and sharded
    """

    model = BoringModel()
    with pytest.raises(MisconfigurationException,
                       match='Sharded Plugin is not supported with Apex AMP'):
        trainer = Trainer(
            fast_dev_run=True,
            accelerator='ddp_spawn',
            plugins=[DDPShardedPlugin()],
            precision=16,
            amp_backend='apex',
        )

        trainer.fit(model)
Exemple #11
0
def test_ddp_sharded_plugin_finetune(tmpdir):
    """
        Test to ensure that we can save and restart training (simulate fine-tuning)
    """
    model = BoringModel()
    trainer = Trainer(
        gpus=2,
        accelerator='ddp_spawn',
        plugins=[DDPShardedPlugin()],
        fast_dev_run=True,
    )
    trainer.fit(model)

    checkpoint_path = os.path.join(tmpdir, 'model.pt')
    trainer.save_checkpoint(checkpoint_path)
    saved_model = BoringModel.load_from_checkpoint(checkpoint_path)

    trainer = Trainer(fast_dev_run=True, )
    trainer.fit(saved_model)
Exemple #12
0
def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir):
    """
        Test to ensure that checkpoint is saved correctly when using multiple GPUs
    """
    model = BoringModel()
    trainer = Trainer(
        gpus=2,
        accelerator='ddp_spawn',
        plugins=[DDPShardedPlugin()],
        fast_dev_run=True,
    )

    trainer.fit(model)

    checkpoint_path = os.path.join(tmpdir, 'model.pt')
    trainer.save_checkpoint(checkpoint_path)
    saved_model = BoringModel.load_from_checkpoint(checkpoint_path)

    # Assert model parameters are identical after loading
    for ddp_param, shard_param in zip(model.parameters(),
                                      saved_model.parameters()):
        assert torch.equal(ddp_param, shard_param)