Exemple #1
0
def test():
    # 配置文件
    cf = Config('./config.yaml')
    # 有GPU用GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # 测试数据
    test_data = NewsDataset("./data/cnews_final_test.txt", cf.max_seq_len)
    test_dataloader = DataLoader(test_data,
                                 batch_size=cf.batch_size,
                                 shuffle=True)

    # 模型
    config = BertConfig("./output/pytorch_bert_config.json")
    model = BertForSequenceClassification(config, num_labels=cf.num_labels)
    model.load_state_dict(torch.load("./output/pytorch_model.bin"))

    # 把模型放到指定设备
    model.to(device)

    # 让模型并行化运算
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # 训练
    start_time = time.time()

    data_len = len(test_dataloader)

    model.eval()
    y_pred = np.array([])
    y_test = np.array([])
    # for step,batch in enumerate(tqdm(test_dataloader,"batch",total=len(test_dataloader))):
    for step, batch in enumerate(test_dataloader):
        label_id = batch['label_id'].squeeze(1).to(device)
        word_ids = batch['word_ids'].to(device)
        segment_ids = batch['segment_ids'].to(device)
        word_mask = batch['word_mask'].to(device)

        loss = model(word_ids, segment_ids, word_mask, label_id)

        with torch.no_grad():
            pred = get_model_labels(model, word_ids, segment_ids, word_mask)
        y_pred = np.hstack((y_pred, pred))
        y_test = np.hstack((y_test, label_id.to("cpu").numpy()))

    # 评估
    print("Precision, Recall and F1-Score...")
    print(
        metrics.classification_report(y_test,
                                      y_pred,
                                      target_names=get_labels('./data/label')))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test, y_pred)
    print(cm)
Exemple #2
0
def main():
    test_df = pd.read_csv(TEST_PATH)

    with timer('preprocessing text'):
        test_df['comment_text'] = test_df['comment_text'].astype(str)
        test_df = test_df.fillna(0)

    with timer('load embedding'):
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                                  cache_dir=None,
                                                  do_lower_case=True)
        X_text = convert_lines(test_df["comment_text"].fillna("DUMMY_VALUE"),
                               max_len, tokenizer)

    with timer('train'):
        model = BertForSequenceClassification(bert_config, num_labels=n_labels)
        model.load_state_dict(torch.load(model_path))
        model = model.to(device)

        test_dataset = torch.utils.data.TensorDataset(
            torch.tensor(X_text, dtype=torch.long))
        test_loader = torch.utils.data.DataLoader(test_dataset,
                                                  batch_size=batch_size * 2,
                                                  shuffle=False)

        test_pred = inference(model, test_loader, device, n_labels)
        del model
        gc.collect()
        torch.cuda.empty_cache()

    submission = pd.DataFrame.from_dict({
        'id': test_df['id'],
        'prediction': test_pred.reshape(-1)
    })
    submission.to_csv('submission.csv', index=False)
    LOGGER.info(submission.head())
Exemple #3
0
def get_trained_model(fine_tuned="bert_pytorch.bin",
                      device=torch.device('cuda')):
    model = None
    y_columns = [
        'toxic', "severe_toxic", "obscene", "threat", "insult", "identity_hate"
    ]
    pretrain_data_folder = PRETRAIND_PICKLE_AND_MORE

    if not os.path.exists(pretrain_data_folder + "/" + fine_tuned):
        pretrain_data_folder = '/home/working'

    if os.path.exists(pretrain_data_folder + "/" + fine_tuned):
        output_model_file = pretrain_data_folder + "/" + fine_tuned
        bert_config = BertConfig.from_json_file(pretrain_data_folder +
                                                "/bert_config.json")

        # Run validation
        # The following 2 lines are not needed but show how to download the model for prediction
        model = BertForSequenceClassification(bert_config,
                                              num_labels=len(y_columns))
        model.load_state_dict(torch.load(output_model_file))
        model.to(device)

    return model
                    type=str, required=True, help="the test_file.")
parser.add_argument('--vocab_file', default='../data/chinese_L-12_H-768_A-12/vocab.txt',
                    type=str, help="the vocab file for bert")
parser.add_argument('--max_length', default=256,
                    type=int, help="the max length of a sentence")
parser.add_argument('--output_path', default='./rank_output.json',
                    type=str, required=True, help="the output file path")
args = parser.parse_args()


label_list = ["0", "1"]
device = torch.device('cuda')
tokenizer = BertTokenizer(args.vocab_file)
config = BertConfig(args.config_file)
model = BertForSequenceClassification(config, num_labels=2)
model.load_state_dict(torch.load(args.model_path, map_location=device))


def get_datas(path):
    datasets = []
    with open(path, 'r', encoding='utf-8') as reader:
        for lidx, line in enumerate(tqdm(reader)):
            dataset = []
            sample = json.loads(line.strip())
            question = sample['question']
            for i, doc in enumerate(sample['documents']):
                q_id = str(sample['question_id'])
                for para in doc['paragraphs']:
                    dataset.append([q_id, question, para])            
                datasets.append(dataset)
    return datasets
def main():
    # train_df = pd.read_csv(TRAIN_PATH).sample(frac=1.0, random_state=seed)
    # train_size = int(len(train_df) * 0.9)
    train_df = pd.read_csv(TRAIN_PATH).sample(train_size + valid_size, random_state=seed)
    LOGGER.info(f'data_size is {len(train_df)}')
    LOGGER.info(f'train_size is {train_size}')

    y = np.where(train_df['target'] >= 0.5, 1, 0)
    y_aux = train_df[AUX_COLUMNS].values

    identity_columns_new = []
    for column in identity_columns + ['target']:
        train_df[column + "_bin"] = np.where(train_df[column] >= 0.5, True, False)
        if column != "target":
            identity_columns_new.append(column + "_bin")

    sample_weights = np.ones(len(train_df), dtype=np.float32)
    sample_weights += train_df[identity_columns_new].sum(axis=1)
    sample_weights += train_df['target_bin'] * (~train_df[identity_columns_new]).sum(axis=1)
    sample_weights += (~train_df['target_bin']) * train_df[identity_columns_new].sum(axis=1) * 5
    sample_weights /= sample_weights.mean()

    with timer('preprocessing text'):
        # df["comment_text"] = [analyzer_embed(text) for text in df["comment_text"]]
        train_df['comment_text'] = train_df['comment_text'].astype(str)
        train_df = train_df.fillna(0)

    with timer('load embedding'):
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH, cache_dir=None, do_lower_case=True)
        X_text = convert_lines(train_df["comment_text"].fillna("DUMMY_VALUE"), max_len, tokenizer)

    test_df = train_df[train_size:]

    with timer('train'):
        X_train, y_train, y_aux_train, w_train = X_text[:train_size], y[:train_size], y_aux[
                                                                                      :train_size], sample_weights[
                                                                                                    :train_size]
        X_val, y_val, y_aux_val, w_val = X_text[train_size:], y[train_size:], y_aux[train_size:], sample_weights[
                                                                                                  train_size:]
        model = BertForSequenceClassification(bert_config, num_labels=n_labels)
        model.load_state_dict(torch.load(model_path))
        model.zero_grad()
        model = model.to(device)

        train_dataset = torch.utils.data.TensorDataset(torch.tensor(X_train, dtype=torch.long),
                                                       torch.tensor(y_train, dtype=torch.float))
        valid = torch.utils.data.TensorDataset(torch.tensor(X_val, dtype=torch.long),
                                               torch.tensor(y_val, dtype=torch.float))
        train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
        valid_loader = torch.utils.data.DataLoader(valid, batch_size=batch_size * 2, shuffle=False)

        sample_weight_train = [w_train.values, np.ones_like(w_train)]
        sample_weight_val = [w_val.values, np.ones_like(w_val)]

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]

        num_train_optimization_steps = int(epochs * train_size / batch_size / accumulation_steps)
        total_step = int(epochs * train_size / batch_size)

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=2e-5*gamma,
                             warmup=0.05,
                             t_total=num_train_optimization_steps)

        model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0)
        criterion = torch.nn.BCEWithLogitsLoss().to(device)

        LOGGER.info(f"Starting 1 epoch...")
        tr_loss, train_losses = train_one_epoch(model, train_loader, criterion, optimizer, device,
                                                accumulation_steps, total_step, n_labels)
        LOGGER.info(f'Mean train loss: {round(tr_loss,5)}')

        torch.save(model.state_dict(), '{}_dic'.format(exp))

        valid_loss, oof_pred = validate(model, valid_loader, criterion, device, n_labels)
        del model
        gc.collect()
        torch.cuda.empty_cache()

    test_df["pred"] = oof_pred.reshape(-1)
    test_df = convert_dataframe_to_bool(test_df)
    bias_metrics_df = compute_bias_metrics_for_model(test_df, identity_columns)
    LOGGER.info(bias_metrics_df)

    score = get_final_metric(bias_metrics_df, calculate_overall_auc(test_df))
    LOGGER.info(f'final score is {score}')

    test_df.to_csv("oof.csv", index=False)

    xs = list(range(1, len(train_losses) + 1))
    plt.plot(xs, train_losses, label='Train loss');
    plt.legend();
    plt.xticks(xs);
    plt.xlabel('Iter')
    plt.savefig("loss.png")
Exemple #6
0
class TransformersClassifierHandler(BaseHandler, ABC):
    """
    Transformers text classifier handler class. This handler takes a text (string) and
    as input and returns the classification text based on the serialized transformers checkpoint.
    """
    def __init__(self):
        super(TransformersClassifierHandler, self).__init__()
        self.initialized = False

    def initialize(self, ctx):
        properties = ctx.system_properties
        MODEL_DIR = properties.get("model_dir")
        self.device = torch.device("cuda:" +
                                   str(properties.get("gpu_id")) if torch.cuda.
                                   is_available() else "cpu")
        self.labelencoder = preprocessing.LabelEncoder()
        self.labelencoder.classes_ = np.load(
            os.path.join(MODEL_DIR, 'classes.npy'))
        config = BertConfig(os.path.join(MODEL_DIR, 'bert_config.json'))
        self.model = BertForSequenceClassification(
            config, num_labels=len(self.labelencoder.classes_))
        self.model.load_state_dict(
            torch.load(os.path.join(MODEL_DIR, 'pytorch_model.bin'),
                       map_location="cpu"))
        self.model.to(self.device)
        self.model.eval()

        self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        self.softmax = torch.nn.Softmax(dim=-1)
        # self.batch_size = batch_size

        logger.debug(
            'Transformer model from path {0} loaded successfully'.format(
                MODEL_DIR))
        self.manifest = ctx.manifest
        self.initialized = True

    def preprocess(self, data):
        ids = []
        segment_ids = []
        input_masks = []
        MAX_LEN = 128

        for sen in data:
            text_tokens = self.tokenizer.tokenize(sen)
            tokens = ["[CLS]"] + text_tokens + ["[SEP]"]
            temp_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(temp_ids)
            segment_id = [0] * len(temp_ids)
            padding = [0] * (MAX_LEN - len(temp_ids))

            temp_ids += padding
            input_mask += padding
            segment_id += padding

            ids.append(temp_ids)
            input_masks.append(input_mask)
            segment_ids.append(segment_id)

        ## Convert input list to Torch Tensors
        ids = torch.tensor(ids)
        segment_ids = torch.tensor(segment_ids)
        input_masks = torch.tensor(input_masks)
        validation_data = TensorDataset(ids, input_masks, segment_ids)
        validation_sampler = SequentialSampler(validation_data)
        validation_dataloader = DataLoader(
            validation_data,
            sampler=validation_sampler,
            batch_size=len(data),
            num_workers=self.dataloader_num_workers)

        return validation_dataloader

    def inference(self, validation_dataloader):
        """
        Predict the class of a text using a trained transformer model.
        """
        # NOTE: This makes the assumption that your model expects text to be tokenized
        # with "input_ids" and "token_type_ids" - which is true for some popular transformer models, e.g. bert.
        # If your transformer model expects different tokenization, adapt this code to suit
        # its expected input format.
        responses = []
        for batch in validation_dataloader:
            # Add batch to GPU
            batch = tuple(t.to(self.device) for t in batch)
            # Unpack the inputs from our dataloader
            b_input_ids, b_input_mask, b_labels = batch
            with torch.no_grad():
                # Forward pass, calculate logit predictions
                logits = self.model(b_input_ids,
                                    token_type_ids=None,
                                    attention_mask=b_input_mask)
                for i in range(logits.size(0)):
                    label_idx = [
                        self.softmax(
                            logits[i]).detach().cpu().numpy().argmax()
                    ]
                    label_str = self.labelencoder.inverse_transform(
                        label_idx)[0]
                    responses.append(label_str)

        return responses

    def postprocess(self, inference_output):
        # TODO: Add any needed post-processing of the model predictions here
        return inference_output
Exemple #7
0
x_test = test_df["comment_text"].apply(lambda x: content_preprocessing(x))

## Tokenize and padding
BERT_MODEL_PATH = '../input/bert-pretrained-models/uncased_l-12_h-768_a-12/uncased_L-12_H-768_A-12/'
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH)
x_test = convert_lines(x_test,MAX_LEN,tokenizer)


x_test_cuda = torch.tensor(x_test, dtype=torch.long).cuda()
test_data = torch.utils.data.TensorDataset(x_test_cuda)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False)

## load fine-tuned model
bert_config = BertConfig('../input/bert-pretrained-models/uncased_l-12_h-768_a-12/uncased_L-12_H-768_A-12/bert_config.json')
net = BertForSequenceClassification(bert_config,num_labels=6)
net.load_state_dict(torch.load("../input/bert-model3/bert_pytorch_v3.pt"))
net.cuda()

## inference
net.eval()
result_1 = list()
with torch.no_grad():
  for (x_batch,) in test_loader:
    y_pred = net(x_batch)
    y_pred = torch.sigmoid(y_pred.cpu()).numpy()[:,0]
    result_1.extend(y_pred)
result_1 = np.array(result_1)



net = BertForSequenceClassification(bert_config,num_labels=6)
Exemple #8
0
            optimizer.step()                            # Now we can do an optimizer step
            optimizer.zero_grad()
        if lossf:
            lossf = 0.98*lossf+0.02*loss.item()
        else:
            lossf = loss.item()
        tk0.set_postfix(loss = lossf)
        avg_loss += loss.item() / len(train_loader)
        avg_accuracy += torch.mean(((torch.sigmoid(y_pred[:,0])>0.5) == (y_batch[:,0]>0.5).to(device)).to(torch.float) ).item()/len(train_loader)
    tq.set_postfix(avg_loss=avg_loss,avg_accuracy=avg_accuracy)


torch.save(model.state_dict(), output_model_file)

# Run validation
# The following 2 lines are not needed but show how to download the model for prediction
model = BertForSequenceClassification(bert_config,num_labels=len(y_columns))
model.load_state_dict(torch.load(output_model_file ))
model.to(device)
for param in model.parameters():
    param.requires_grad=False
model.eval()
valid_preds = np.zeros((len(X_val)))
valid = torch.utils.data.TensorDataset(torch.tensor(X_val,dtype=torch.long))
valid_loader = torch.utils.data.DataLoader(valid, batch_size=32, shuffle=False)

tk0 = tqdm_notebook(valid_loader)
for i,(x_batch,)  in enumerate(tk0):
    pred = model(x_batch.to(device), attention_mask=(x_batch>0).to(device), labels=None)
    valid_preds[i*32:(i+1)*32]=pred[:,0].detach().cpu().squeeze().numpy()
Exemple #9
0
batch_size = 1

# preprocessing
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                          cache_dir=None,
                                          do_lower_case=True)
test_all = pd.read_csv("data/test.csv")
test_all = test_all.iloc[:10, :]
test_all['comment_text'] = test_all['comment_text'].astype(str)
test_X = convert_lines(test_all["comment_text"].fillna("DUMMY_VALUE"),
                       MAX_SEQUENCE_LENGTH, tokenizer)
test_all = test_all.fillna(0)

# load model and perform inference
model = BertForSequenceClassification(bert_config, num_labels=1)
model.load_state_dict(torch.load(model_file))
model.to(device)

for param in model.parameters():
    param.requires_grad = False
model.eval()

test_preds = np.zeros((len(test_X)))
test = torch.utils.data.TensorDataset(torch.tensor(test_X, dtype=torch.long))
test_loader = torch.utils.data.DataLoader(test,
                                          batch_size=batch_size,
                                          shuffle=False)

tk0 = tqdm(test_loader)
for i, (x_batch, ) in enumerate(tk0):
    pred = model(x_batch.to(device),
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True

bert_config = BertConfig('../input/bert-inference/bert/bert_config.json')
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                          cache_dir=None,
                                          do_lower_case=True)
test_df = pd.read_csv(
    "../input/jigsaw-unintended-bias-in-toxicity-classification/test.csv")
test_df['comment_text'] = test_df['comment_text'].astype(str)
X_test = convert_lines(test_df["comment_text"].fillna("DUMMY_VALUE"),
                       MAX_SEQUENCE_LENGTH, tokenizer)
model = BertForSequenceClassification(bert_config, num_labels=1)
model.load_state_dict(
    torch.load("../input/bert-inference/bert/bert_pytorch.bin"))
model.to(device)
for param in model.parameters():
    param.requires_grad = False
model.eval()
test_preds = np.zeros((len(X_test)))
test = torch.utils.data.TensorDataset(torch.tensor(X_test, dtype=torch.long))
test_loader = torch.utils.data.DataLoader(test, batch_size=32, shuffle=False)
tk0 = tqdm(test_loader)
for i, (x_batch, ) in enumerate(tk0):
    pred = model(x_batch.to(device),
                 attention_mask=(x_batch > 0).to(device),
                 labels=None)
    test_preds[i * 32:(i + 1) * 32] = pred[:,
                                           0].detach().cpu().squeeze().numpy()
Exemple #11
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path
    parser.add_argument("--output_model_path",
                        default="./models/classifier_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--output_lossfig_path",
                        default="./models/loss.png",
                        type=str,
                        help="Path of the output model.")

    # Model options.
    parser.add_argument("--batch_size",
                        type=int,
                        default=32,
                        help="Batch size.")
    parser.add_argument("--seq_length",
                        type=int,
                        default=128,
                        help="Sequence length.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.5, help="Dropout.")
    parser.add_argument("--epochs_num",
                        type=int,
                        default=5,
                        help="Number of epochs.")
    parser.add_argument("--report_steps",
                        type=int,
                        default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7, help="Random seed.")
    parser.add_argument("--device",
                        type=str,
                        default='cpu',
                        help="Device use.")

    args = parser.parse_args()

    def set_seed(seed=7):
        random.seed(seed)
        os.environ['PYTHONHASHSEED'] = str(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.deterministic = True

    set_seed(args.seed)

    # 读取数据
    train = pd.read_csv('../data5k/train.tsv', encoding='utf-8', sep='\t')
    dev = pd.read_csv('../data5k/dev.tsv', encoding='utf-8', sep='\t')
    test = pd.read_csv('../data5k/test.tsv', encoding='utf-8', sep='\t')

    # Load bert vocabulary and tokenizer
    bert_config = BertConfig('bert_model/bert_config.json')
    BERT_MODEL_PATH = 'bert_model'
    bert_tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                                   cache_dir=None,
                                                   do_lower_case=False)

    # 产生输入数据
    processor = DataPrecessForSingleSentence(bert_tokenizer=bert_tokenizer)

    # train dataset
    seqs, seq_masks, seq_segments = processor.get_input(
        sentences=train['text_a'].tolist(), max_seq_len=args.seq_length)
    labels = train['label'].tolist()
    t_seqs = torch.tensor(seqs, dtype=torch.long)
    t_seq_masks = torch.tensor(seq_masks, dtype=torch.long)
    t_seq_segments = torch.tensor(seq_segments, dtype=torch.long)
    t_labels = torch.tensor(labels, dtype=torch.long)
    train_data = TensorDataset(t_seqs, t_seq_masks, t_seq_segments, t_labels)
    train_sampler = RandomSampler(train_data)
    train_dataloder = DataLoader(dataset=train_data,
                                 sampler=train_sampler,
                                 batch_size=args.batch_size)

    # dev dataset
    seqs, seq_masks, seq_segments = processor.get_input(
        sentences=dev['text_a'].tolist(), max_seq_len=args.seq_length)
    labels = dev['label'].tolist()
    t_seqs = torch.tensor(seqs, dtype=torch.long)
    t_seq_masks = torch.tensor(seq_masks, dtype=torch.long)
    t_seq_segments = torch.tensor(seq_segments, dtype=torch.long)
    t_labels = torch.tensor(labels, dtype=torch.long)
    dev_data = TensorDataset(t_seqs, t_seq_masks, t_seq_segments, t_labels)
    dev_sampler = RandomSampler(dev_data)
    dev_dataloder = DataLoader(dataset=dev_data,
                               sampler=dev_sampler,
                               batch_size=args.batch_size)

    # test dataset
    seqs, seq_masks, seq_segments = processor.get_input(
        sentences=test['text_a'].tolist(), max_seq_len=args.seq_length)
    labels = test['label'].tolist()
    t_seqs = torch.tensor(seqs, dtype=torch.long)
    t_seq_masks = torch.tensor(seq_masks, dtype=torch.long)
    t_seq_segments = torch.tensor(seq_segments, dtype=torch.long)
    t_labels = torch.tensor(labels, dtype=torch.long)
    test_data = TensorDataset(t_seqs, t_seq_masks, t_seq_segments, t_labels)
    test_sampler = RandomSampler(test_data)
    test_dataloder = DataLoader(dataset=test_data,
                                sampler=test_sampler,
                                batch_size=args.batch_size)

    # build classification model
    model = BertForSequenceClassification(bert_config, 2)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    if args.device == 'cpu':
        device = torch.device("cpu")
    else:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if torch.cuda.device_count() > 1:
            print("{} GPUs are available. Let's use them.".format(
                torch.cuda.device_count()))
            model = nn.DataParallel(model)
    model = model.to(device)

    # evaluation function
    def evaluate(args, is_test, metrics='Acc'):
        if is_test:
            dataset = test_dataloder
            instances_num = test.shape[0]
            print("The number of evaluation instances: ", instances_num)
        else:
            dataset = dev_dataloder
            instances_num = dev.shape[0]
            print("The number of evaluation instances: ", instances_num)

        correct = 0
        model.eval()
        # Confusion matrix.
        confusion = torch.zeros(2, 2, dtype=torch.long)

        for i, batch_data in enumerate(dataset):
            batch_data = tuple(t.to(device) for t in batch_data)
            batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels = batch_data
            with torch.no_grad():
                logits = model(batch_seqs,
                               batch_seq_masks,
                               batch_seq_segments,
                               labels=None)
            pred = logits.softmax(dim=1).argmax(dim=1)
            gold = batch_labels
            for j in range(pred.size()[0]):
                confusion[pred[j], gold[j]] += 1
            correct += torch.sum(pred == gold).item()

        if is_test:
            print("Confusion matrix:")
            print(confusion)
            print("Report precision, recall, and f1:")

        for i in range(confusion.size()[0]):
            p = confusion[i, i].item() / confusion[i, :].sum().item()
            r = confusion[i, i].item() / confusion[:, i].sum().item()
            f1 = 2 * p * r / (p + r)
            if i == 1:
                label_1_f1 = f1
            print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
        print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(
            correct / instances_num, correct, instances_num))
        if metrics == 'Acc':
            return correct / instances_num
        elif metrics == 'f1':
            return label_1_f1
        else:
            return correct / instances_num

    # training phase
    print("Start training.")
    instances_num = train.shape[0]
    batch_size = args.batch_size
    train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    # 待优化的参数
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup,
                         t_total=train_steps)

    # 存储每一个batch的loss
    all_loss = []
    all_acc = []
    total_loss = 0.0
    result = 0.0
    best_result = 0.0

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for step, batch_data in enumerate(train_dataloder):
            batch_data = tuple(t.to(device) for t in batch_data)
            batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels = batch_data
            # 对标签进行onehot编码
            one_hot = torch.zeros(batch_labels.size(0), 2).long()
            '''one_hot_batch_labels = one_hot.scatter_(
                dim=1,
                index=torch.unsqueeze(batch_labels, dim=1),
                src=torch.ones(batch_labels.size(0), 2).long())

            
            logits = model(
                batch_seqs, batch_seq_masks, batch_seq_segments, labels=None)
            logits = logits.softmax(dim=1)
            loss_function = CrossEntropyLoss()
            loss = loss_function(logits, batch_labels)'''
            loss = model(batch_seqs, batch_seq_masks, batch_seq_segments,
                         batch_labels)
            loss.backward()
            total_loss += loss.item()
            if (step + 1) % 100 == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, step + 1, total_loss / 100))
                sys.stdout.flush()
                total_loss = 0.
            #print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, step+1, loss))
            optimizer.step()
            optimizer.zero_grad()

        all_loss.append(total_loss)
        total_loss = 0.
        print("Start evaluation on dev dataset.")
        result = evaluate(args, False)
        all_acc.append(result)
        if result > best_result:
            best_result = result
            torch.save(model, open(args.output_model_path, "wb"))
            #save_model(model, args.output_model_path)
        else:
            continue

        print("Start evaluation on test dataset.")
        evaluate(args, True)

    print('all_loss:', all_loss)
    print('all_acc:', all_acc)

    # Evaluation phase.
    print("Final evaluation on the test dataset.")
    model.load_state_dict(torch.load(args.output_model_path))
    evaluate(args, True)
    '''
    return pd.DataFrame(records).sort_values('subgroup_auc', ascending=True)





# Run validation
# The following 2 lines are not needed but show how to download the model for prediction

for epoch in tq:
    model = BertForSequenceClassification(bert_config,num_labels=len(y_columns))

    #paralleism
    model = nn.DataParallel(model)

    model.load_state_dict(torch.load(output_model_file + '_' + str(epoch) ))
    model.to(device)
    for param in model.parameters():
        param.requires_grad=False
    model.eval()
    valid_preds = np.zeros((len(X_val)))
    valid = torch.utils.data.TensorDataset(torch.tensor(X_val,dtype=torch.long))
    valid_loader = torch.utils.data.DataLoader(valid, batch_size=32, shuffle=False)

    tk0 = tqdm(valid_loader)
    for i,(x_batch,)  in enumerate(tk0):
        pred = model(x_batch.to(device), attention_mask=(x_batch>0).to(device), labels=None)
        valid_preds[i*32:(i+1)*32]=pred[:,0].detach().cpu().squeeze().numpy()

    MODEL_NAME = 'model1'
    test_df[MODEL_NAME] = torch.sigmoid(torch.tensor(valid_preds)).numpy()
Exemple #13
0
                    M = torch.tensor(seq_padding(M), dtype=torch.long)
                    Sg = torch.zeros(*T.size(), dtype=torch.long)
                    logger.info(f'T:{T.size()}, M:{M.size()}, Sg:{Sg.size()}')
                    yield S, U, O, M, Sg, T
                    S, U, O, M, T = [], [], [], [], []
                    pre_obj_t = ''


eval_data = data_generator(log_data_dic)

kg_model_path = Path(data_dir) / 'kg_intent_model.pt'
config_path = Path(data_dir) / 'kg_intent_config.json'
config = BertConfig(str(config_path))
model = BertForSequenceClassification(config, num_labels=num_class)
model.load_state_dict(
    torch.load(kg_model_path,
               map_location='cpu' if not torch.cuda.is_available() else None))

# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
n_gpu = torch.cuda.device_count()
if n_gpu > 1:
    logger.info(f"let's use {n_gpu} gpu")

model.to(device)

if n_gpu > 1:
    model = nn.DataParallel(model)

maps = json.load((Path(data_dir) / 'maps_for_log.json').open())
Exemple #14
0
y_columns = ['target']

train_df = train_df.drop(['comment_text'], axis=1)
train_df['target'] = (train_df['target'] >= 0.5).astype(float)

valid_df = valid_df.fillna(0)
valid_df = valid_df.drop(['comment_text'], axis=1)
valid_df['target'] = (valid_df['toxic'] == 1) | (valid_df['severe_toxic'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['obscene'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['threat'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['insult'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['identity_hate'] == 1)
valid_df['target'] = valid_df['target'].astype(float)

model = BertForSequenceClassification(bert_config, num_labels=1)
model.load_state_dict(torch.load("./datas/bert_pytorch.bin"))
model.to(device)
for param in model.parameters():
    param.requires_grad = False

X = train_seqs[:]
y = train_df['target'].values[:]
valid_X = valid_seqs[:]
valid_y = valid_df['target'].values[:]
X = np.concatenate((X, valid_X), axis=1)
y = np.concatenate((y, valid_y), axis=0)

train_dataset = torch.utils.data.TensorDataset(
    torch.tensor(X, dtype=torch.long), torch.tensor(y, dtype=torch.float))

output_model_file = "./datas/mybert.bin"
Exemple #15
0
class ClassificationModel:
    def __init__(self,
                 task,
                 val=0.1,
                 bert_model=BERT_MODEL,
                 gpu=False,
                 seed=0):
        self.gpu = gpu
        self.task = task
        self.bert_model = bert_model
        self.x_train, self.y_train = load_train_dataset(self.task)
        self.x_val = np.random.choice(self.x_train,
                                      size=(int(val * len(self.x_train)), ),
                                      replace=False)
        self.y_val = np.random.choice(self.y_train,
                                      size=(int(val * len(self.x_train)), ),
                                      replace=False)
        self.x_test_ids, self.x_test = load_test_dataset(self.task)
        self.num_classes = len(TASK_LABELS[task])

        self.model = None
        self.optimizer = None
        self.tokenizer = BertTokenizer.from_pretrained(self.bert_model)

        self.plt_x = []
        self.plt_y = []

        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if self.gpu:
            torch.cuda.manual_seed_all(seed)

    def __init_model(self):
        if self.gpu:
            self.device = torch.device("cuda")
            print("Start learning with GPU")
        else:
            self.device = torch.device("cpu")
            print("Start learning with CPU")
        self.model.to(self.device)
        print(torch.cuda.memory_allocated(self.device))

    def new_model(self):
        self.model = BertForSequenceClassification.from_pretrained(
            self.bert_model, num_labels=self.num_classes)
        self.__init_model()

    def load_model(self, path_model, path_config):
        self.model = BertForSequenceClassification(BertConfig(path_config),
                                                   num_labels=self.num_classes)
        self.model.load_state_dict(torch.load(path_model))
        self.__init_model()

    def save_model(self, path_model, path_config):
        torch.save(self.model.state_dict(), path_model)
        with open(path_config, 'w') as f:
            f.write(self.model.config.to_json_string())

    # noinspection PyArgumentList
    def train(self,
              epochs,
              plot_path,
              batch_size=32,
              lr=5e-5,
              model_path=None,
              config_path=None):
        model_params = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in model_params
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in model_params if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        self.optimizer = BertAdam(optimizer_grouped_parameters,
                                  lr=lr,
                                  warmup=0.1,
                                  t_total=int(len(self.x_train) / batch_size) *
                                  epochs)

        train_features = convert_examples_to_features(self.x_train,
                                                      self.y_train,
                                                      MAX_SEQ_LENGTH,
                                                      self.tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        _, counts = np.unique(self.y_train, return_counts=True)
        class_weights = [sum(counts) / c for c in counts]
        example_weights = [class_weights[e] for e in self.y_train]
        sampler = WeightedRandomSampler(example_weights, len(self.y_train))
        train_dataloader = DataLoader(train_data,
                                      sampler=sampler,
                                      batch_size=batch_size)

        self.model.train()
        temp_loss = 0
        nb_tr_steps = 0
        for e in range(epochs):
            print("Epoch {e}".format(e=e))
            f1, acc = self.val()
            print("\nF1 score: {f1}, Accuracy: {acc}".format(f1=f1, acc=acc))
            if model_path is not None and config_path is not None:
                self.save_model(model_path, config_path)
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(self.device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                loss = self.model(input_ids, segment_ids, input_mask,
                                  label_ids)
                loss.backward()

                self.plt_y.append(loss.item())
                self.plt_x.append(nb_tr_steps)
                self.save_plot(plot_path)

                nb_tr_steps += 1
                self.optimizer.step()
                self.optimizer.zero_grad()

                if self.gpu:
                    torch.cuda.empty_cache()

    def val(self, batch_size=32, test=False):
        eval_features = convert_examples_to_features(self.x_val, self.y_val,
                                                     MAX_SEQ_LENGTH,
                                                     self.tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)

        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=batch_size)

        f1, acc = 0, 0
        nb_eval_examples = 0

        for input_ids, input_mask, segment_ids, gnd_labels in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(self.device)
            input_mask = input_mask.to(self.device)
            segment_ids = segment_ids.to(self.device)

            with torch.no_grad():
                logits = self.model(input_ids, segment_ids, input_mask)

            predicted_labels = np.argmax(logits.detach().cpu().numpy(), axis=1)
            acc += np.sum(predicted_labels == gnd_labels.numpy())
            tmp_eval_f1 = f1_score(predicted_labels,
                                   gnd_labels,
                                   average='macro')
            f1 += tmp_eval_f1 * input_ids.size(0)
            nb_eval_examples += input_ids.size(0)

        return f1 / nb_eval_examples, acc / nb_eval_examples

    def save_plot(self, path):
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots()
        ax.plot(self.plt_x, self.plt_y)

        ax.set(xlabel='Training steps', ylabel='Loss')

        fig.savefig(path)
        plt.close()

    def create_test_predictions(self, path):
        eval_features = convert_examples_to_features(self.x_test,
                                                     [-1] * len(self.x_test),
                                                     MAX_SEQ_LENGTH,
                                                     self.tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)

        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=16)

        predictions = []
        inverse_labels = {v: k for k, v in TASK_LABELS[self.task].items()}

        for input_ids, input_mask, segment_ids, gnd_labels in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(self.device)
            input_mask = input_mask.to(self.device)
            segment_ids = segment_ids.to(self.device)

            with torch.no_grad():
                logits = self.model(input_ids, segment_ids, input_mask)

            predictions += [
                inverse_labels[p]
                for p in list(np.argmax(logits.detach().cpu().numpy(), axis=1))
            ]
        with open(path, "w") as csv_file:
            writer = csv.writer(csv_file, delimiter=',')
            for i, prediction in enumerate(predictions):
                writer.writerow([int(self.x_test_ids[i]), prediction])

        return predictions
WORK_DIR = os.path.join(args.pytorch_dump_path,args.model_name)
TOXICITY_COLUMN = 'target'

bert_config = BertConfig(os.path.join(args.tf_checkpoint_path,args.model_name,'bert_config.json'))

### tokenizer
BERT_MODEL_PATH=os.path.join(args.tf_checkpoint_path,args.model_name)
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH, cache_dir=None,do_lower_case=True)


test_df = pd.read_csv(os.path.join(args.data_dir,"test.csv"))
test_df['comment_text'] = test_df['comment_text'].astype(str) 
X_test = convert_lines(test_df["comment_text"].fillna("DUMMY_VALUE"), args.max_sequence_length,tokenizer)

model = BertForSequenceClassification(bert_config, num_labels=1)
model.load_state_dict(torch.load(os.path.join(args.weight_path_pytorch,args.model_name+"bert_pytorch.bin")))
model.to(device)
for param in model.parameters():
    param.requires_grad = False
model.eval()

test_preds = np.zeros((len(X_test)))
test = torch.utils.data.TensorDataset(torch.tensor(X_test, dtype=torch.long))
test_loader = torch.utils.data.DataLoader(test, batch_size=32, shuffle=False)
tk0 = tqdm(test_loader)
for i, (x_batch,) in enumerate(tk0):
    pred = model(x_batch.to(device), attention_mask=(x_batch > 0).to(device), labels=None)
    test_preds[i * 32:(i + 1) * 32] = pred[:, 0].detach().cpu().squeeze().numpy()

test_pred = torch.sigmoid(torch.tensor(test_preds)).numpy().ravel()
MAX_SEQUENCE_LENGTH = 220
BATCH_SIZE = 32

BERT_MODEL_PATH = 'E:/bertmodel/Bert Pretrained Models/uncased_l-12_h-768_a-12/'
bert_config = BertConfig('E:/bertmodel/bert_inference/bert_config.json')

tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH, cache_dir=None, do_lower_case=True)

df = pd.read_csv('test.csv')
df['comment_text'] = df['comment_text'].astype(str)
x_test = convert_lines(df['comment_text'].fillna('DUMMY_VALUE'), MAX_SEQUENCE_LENGTH, )

# create the model

model = BertForSequenceClassification(bert_config, num_labels=1)
model.load_state_dict(torch.load("E:/bertmodel/bert_inference/bert_pytorch.bin"))
for param in model.parameters():
    param.require_grad = False
model.eval()

test_pred = np.zeros(len(x_test))
test = torch.util.data.TensorDataset(torch.tensor(x_test, dtype=torch.long))
test_loader = torch.util.Data.DataLoader(test, batch_size=32, shuffle=False)
tk = tqdm(test_loader)

for i, (x_batch) in enumerate(tk):
    pred = model(x_batch.to(device), attention_mask=(x_batch > 0).to(device), labels=None)
    test_preds[i * 32:(i + 1) * 32] = pred[:, 0].detach().cpu().squeeze().numpy()
test_pred = torch.sigmoid(torch.tensor(test_preds)).numpy().ravel()

    submission_bert = pd.DataFrame.from_dict({
        'id': test_input_df['id'],
        'prediction': test_pred
    })

    return float(submission_bert['prediction'].values)


seed_everything()

model = BertForSequenceClassification(bert_config, num_labels=1)
#torch.hub.load_state_dict_from_url("https://www.dropbox.com/s/4320po4qph1lrx6/bert_pytorch.bin?dl=1", model_dir="./",map_location=torch.device('cpu'))
model.load_state_dict(
    torch.hub.load_state_dict_from_url(
        "https://www.googleapis.com/drive/v3/files/1RYFMsASHW7a92qa7zW296zgnToRQFeb5?alt=media&key=AIzaSyA0OHTKp3e0TvdIyua79c8jH_v6WBmGEKI",
        model_dir="input/arti-bert-inference/bert",
        map_location=torch.device('cpu')))
#model.load_state_dict()
for param in model.parameters():
    param.requires_grad = False
model.eval()

#Initialize the flask App
app = Flask(__name__)

#model = pickle.load(open('model.pkl', 'rb')) #changer par le bin

handler = logging.FileHandler("test.log")  # Create the file logger
app.logger.addHandler(handler)  # Add it to the built-in logger
app.logger.setLevel(logging.DEBUG)
                                      num_labels=7,
                                      feature_num=50)

validate = True

for fold in [
        1,
]:
    print('Fold{}:'.format(fold))

    validate_idx = kfold[fold][1]
    train_idx = kfold[fold][0]
    #     train_idx = list(range(nrows))[:int(nrows*0.8)]
    #     validate_idx = list(range(nrows))[int(nrows*0.8):]

    model.load_state_dict(
        torch.load(os.path.join(models_path, 'bert_fold{}.bin'.format(fold))))
    model.cuda()
    model.eval()
    for param in model.parameters():
        param.requires_grad = False

    train_pred_fold = []
    test_pred_fold = []
    train_feature_fold = []
    test_feature_fold = []
    # on train_set
    train_dataset = TensorDataset(torch.tensor(x_train, dtype=torch.long), )
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=False)
        avg_accuracy += torch.mean(
            ((torch.sigmoid(y_pred[:, 0]) > 0.5)
             == (y_batch[:, 0] > 0.5).to(device)).to(
                 torch.float)).item() / len(train_loader)
    tq.set_postfix(avg_loss=avg_loss, avg_accuracy=avg_accuracy)
    torch.save(model.state_dict(),
               output_model_file + '_epoch_' + str(epoch) + '.bin')

    #validate
    test_model = BertForSequenceClassification(bert_config,
                                               num_labels=len(y_columns))

    #paralleism
    test_model = nn.DataParallel(test_model)

    test_model.load_state_dict(
        torch.load(output_model_file + '_epoch_' + str(epoch) + '.bin'))
    test_model.to(device)
    for param in test_model.parameters():
        param.requires_grad = False
    test_model.eval()
    valid_preds = np.zeros((len(X_val)))
    print(valid_preds.size)
    valid = torch.utils.data.TensorDataset(
        torch.tensor(X_val, dtype=torch.long))
    valid_loader = torch.utils.data.DataLoader(valid,
                                               batch_size=256,
                                               shuffle=False)

    tk0 = tqdm(valid_loader)
    for i, (x_batch, ) in enumerate(tk0):
        pred = test_model(x_batch.to(device),
Exemple #21
0
class ClassificationModel:
    def __init__(self, bert_model=config.bert_model, gpu=False, seed=0):

        self.gpu = gpu
        self.bert_model = bert_model

        self.train_df = data_reader.load_train_dataset(config.data_path)
        self.val_df = data_reader.load_dev_dataset(config.data_path)
        self.test_df = data_reader.load_test_dataset(config.data_path)

        self.num_classes = len(LABELS)

        self.model = None
        self.optimizer = None
        self.tokenizer = BertTokenizer.from_pretrained(self.bert_model)

        # to plot loss during training process
        self.plt_x = []
        self.plt_y = []

        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if self.gpu:
            torch.cuda.manual_seed_all(seed)

    def __init_model(self):
        if self.gpu:
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")
        self.model.to(self.device)
        print(torch.cuda.memory_allocated(self.device))
        # log available cuda
        if self.device.type == 'cuda':
            print(torch.cuda.get_device_name(0))
            print('Memory Usage:')
            print('Allocated:',
                  round(torch.cuda.memory_allocated(0) / 1024**3, 1), 'GB')
            print('Cached:   ',
                  round(torch.cuda.memory_cached(0) / 1024**3, 1), 'GB')

    def new_model(self):
        self.model = BertForSequenceClassification.from_pretrained(
            self.bert_model, num_labels=self.num_classes)
        self.__init_model()

    def load_model(self, path_model, path_config):
        self.model = BertForSequenceClassification(BertConfig(path_config),
                                                   num_labels=self.num_classes)
        self.model.load_state_dict(torch.load(path_model))
        self.__init_model()

    def save_model(self, path_model, path_config, epoch_n, acc, f1):

        if not os.path.exists(path_model):
            os.makedirs(path_model)

        model_save_path = os.path.join(
            path_model, 'model_{:.4f}_{:.4f}_{:.4f}'.format(epoch_n, acc, f1))

        torch.save(self.model.state_dict(), model_save_path)

        if not os.path.exists(path_config):
            os.makedirs(path_config)

        model_config_path = os.path.join(path_config, 'config.cf')
        with open(model_config_path, 'w') as f:
            f.write(self.model.config.to_json_string())

    def train(self,
              epochs,
              batch_size=config.batch_size,
              lr=config.lr,
              plot_path=None,
              model_path=None,
              config_path=None):

        model_params = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in model_params
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in model_params if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        self.optimizer = BertAdam(
            optimizer_grouped_parameters,
            lr=lr,
            warmup=0.1,
            t_total=int(len(self.train_df) / batch_size) * epochs)

        nb_tr_steps = 0
        train_features = data_reader.convert_examples_to_features(
            self.train_df, config.MAX_SEQ_LENGTH, self.tokenizer)

        # create tensor of all features
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)

        # eval dataloader
        eval_features = data_reader.convert_examples_to_features(
            self.val_df, config.MAX_SEQ_LENGTH, self.tokenizer)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)

        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=batch_size)

        # class weighting
        _, counts = np.unique(self.train_df['label'], return_counts=True)
        class_weights = [sum(counts) / c for c in counts]
        # assign wight to each input sample
        example_weights = [class_weights[e] for e in self.train_df['label']]
        sampler = WeightedRandomSampler(example_weights,
                                        len(self.train_df['label']))
        train_dataloader = DataLoader(train_data,
                                      sampler=sampler,
                                      batch_size=batch_size)

        self.model.train()
        for e in range(epochs):
            print("Epoch {}".format(e))
            if e is not 0:
                f1, acc = self.val(eval_dataloader)
                print("\nF1 score: {}, Accuracy: {}".format(f1, acc))
            if model_path is not None and config_path is not None:
                if e is not 0:
                    self.save_model(model_path, config_path, e, acc, f1)
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(self.device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                loss = self.model(input_ids, segment_ids, input_mask,
                                  label_ids)
                loss.backward()

                #if plot_path is not None:
                #    self.plt_y.append(loss.item())
                #    self.plt_x.append(nb_tr_steps)
                #    self.save_plot(plot_path)

                nb_tr_steps += 1
                self.optimizer.step()
                self.optimizer.zero_grad()

                if self.gpu:
                    torch.cuda.empty_cache()

    def val(self, eval_dataloader, batch_size=config.batch_size):

        f1, acc = 0, 0
        nb_eval_examples = 0

        for input_ids, input_mask, segment_ids, gnd_labels in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(self.device)
            input_mask = input_mask.to(self.device)
            segment_ids = segment_ids.to(self.device)

            with torch.no_grad():
                logits = self.model(input_ids, segment_ids, input_mask)

            predicted_labels = np.argmax(logits.detach().cpu().numpy(), axis=1)
            acc += np.sum(predicted_labels == gnd_labels.numpy())
            tmp_eval_f1 = f1_score(predicted_labels,
                                   gnd_labels,
                                   average='macro')
            f1 += tmp_eval_f1 * input_ids.size(0)
            nb_eval_examples += input_ids.size(0)

        return f1 / nb_eval_examples, acc / nb_eval_examples

    def save_plot(self, path):

        fig, ax = plt.subplots()
        ax.plot(self.plt_x, self.plt_y)

        ax.set(xlabel='Training steps', ylabel='Loss')

        fig.savefig(path)
        plt.close()

    def create_test_predictions(self, path):
        tests_features = data_reader.convert_examples_to_features(
            self.test_df, config.MAX_SEQ_LENGTH, self.tokenizer)

        all_input_ids = torch.tensor([f.input_ids for f in tests_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in tests_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in tests_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in tests_features],
                                     dtype=torch.long)
        all_sample_ids = [f.sample_id for f in tests_features]

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)

        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=16)

        predictions = []
        inverse_labels = {v: k for k, v in LABELS}

        for input_ids, input_mask, segment_ids, gnd_labels in tqdm(
                test_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(self.device)
            input_mask = input_mask.to(self.device)
            segment_ids = segment_ids.to(self.device)

            with torch.no_grad():
                encoded_layers, logits = self.model(input_ids, segment_ids,
                                                    input_mask)

            predictions += [
                inverse_labels[p]
                for p in list(np.argmax(logits.detach().cpu().numpy(), axis=1))
            ]
        with open(path, "w") as csv_file:
            writer = csv.writer(csv_file, delimiter=',')
            for i, prediction in enumerate(predictions):
                writer.writerow([all_sample_ids[i], prediction])

        return predictions
def main():
    train_df = pd.read_csv(TRAIN_PATH)
    train_df['male'] = np.load(
        "../input/identity-column-data/male_labeled.npy")
    train_df['female'] = np.load(
        "../input/identity-column-data/female_labeled.npy")
    train_df['homosexual_gay_or_lesbian'] = np.load(
        "../input/identity-column-data/homosexual_gay_or_lesbian_labeled.npy")
    train_df['christian'] = np.load(
        "../input/identity-column-data/christian_labeled.npy")
    train_df['jewish'] = np.load(
        "../input/identity-column-data/jewish_labeled.npy")
    train_df['muslim'] = np.load(
        "../input/identity-column-data/muslim_labeled.npy")
    train_df['black'] = np.load(
        "../input/identity-column-data/black_labeled.npy")
    train_df['white'] = np.load(
        "../input/identity-column-data/white_labeled.npy")
    train_df['psychiatric_or_mental_illness'] = np.load(
        "../input/identity-column-data/psychiatric_or_mental_illness_labeled.npy"
    )
    fold_df = pd.read_csv(FOLD_PATH)

    # y = np.where(train_df['target'] >= 0.5, 1, 0)
    y = train_df['target'].values
    y_aux = train_df[AUX_COLUMNS].values

    identity_columns_new = []
    for column in identity_columns + ['target']:
        train_df[column + "_bin"] = np.where(train_df[column] >= 0.5, True,
                                             False)
        if column != "target":
            identity_columns_new.append(column + "_bin")

    # Overall
    weights = np.ones((len(train_df), )) / 4
    # Subgroup
    weights += (train_df[identity_columns].fillna(0).values >= 0.5).sum(
        axis=1).astype(bool).astype(np.int) / 4
    # Background Positive, Subgroup Negative
    weights += (
        ((train_df["target"].values >= 0.5).astype(bool).astype(np.int) +
         (1 - (train_df[identity_columns].fillna(0).values >= 0.5).sum(
             axis=1).astype(bool).astype(np.int))) > 1).astype(bool).astype(
                 np.int) / 4
    # Background Negative, Subgroup Positive
    weights += (
        ((train_df["target"].values < 0.5).astype(bool).astype(np.int) +
         (train_df[identity_columns].fillna(0).values >= 0.5).sum(
             axis=1).astype(bool).astype(np.int)) > 1).astype(bool).astype(
                 np.int) / 4
    loss_weight = 0.5

    with timer('preprocessing text'):
        # df["comment_text"] = [analyzer_embed(text) for text in df["comment_text"]]
        train_df['comment_text'] = train_df['comment_text'].astype(str)
        train_df = train_df.fillna(0)

    with timer('load embedding'):
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                                  cache_dir=None,
                                                  do_lower_case=True)
        X_text = convert_lines_head_tail(
            train_df["comment_text"].fillna("DUMMY_VALUE"), max_len, head_len,
            tokenizer)
        del tokenizer
        gc.collect()

    LOGGER.info(f"X_text {X_text.shape}")

    with timer('train'):
        train_index = fold_df.fold_id != fold_id
        valid_index = fold_df.fold_id == fold_id
        X_train, y_train, y_aux_train, w_train = X_text[train_index].astype(
            "int32"), y[train_index], y_aux[train_index], weights[train_index]
        X_val, y_val, y_aux_val, w_val = X_text[valid_index].astype("int32"), y[valid_index], y_aux[valid_index], \
                                         weights[
                                             valid_index]
        test_df = train_df[valid_index]
        del X_text, y, y_aux, weights, train_index, valid_index, train_df
        gc.collect()

        model = BertForSequenceClassification(bert_config, num_labels=n_labels)
        model.load_state_dict(torch.load(model_path))
        model.zero_grad()
        model = model.to(device)

        y_train = np.concatenate(
            (y_train.reshape(-1, 1), w_train.reshape(-1, 1), y_aux_train),
            axis=1).astype("float32")
        y_val = np.concatenate(
            (y_val.reshape(-1, 1), w_val.reshape(-1, 1), y_aux_val),
            axis=1).astype("float32")

        train_dataset = torch.utils.data.TensorDataset(
            torch.tensor(X_train, dtype=torch.long),
            torch.tensor(y_train, dtype=torch.float32))
        valid = torch.utils.data.TensorDataset(
            torch.tensor(X_val, dtype=torch.long),
            torch.tensor(y_val, dtype=torch.float32))
        ran_sampler = torch.utils.data.RandomSampler(train_dataset)
        len_sampler = LenMatchBatchSampler(ran_sampler,
                                           batch_size=batch_size,
                                           drop_last=False)
        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_sampler=len_sampler)
        valid_loader = torch.utils.data.DataLoader(valid,
                                                   batch_size=batch_size * 2,
                                                   shuffle=False)
        LOGGER.info(f"done data loader setup")

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        num_train_optimization_steps = int(epochs * len(X_train) / batch_size /
                                           accumulation_steps)
        total_step = int(epochs * len(X_train) / batch_size)

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=base_lr,
                             warmup=0.005,
                             t_total=num_train_optimization_steps)
        LOGGER.info(f"done optimizer loader setup")

        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O1",
                                          verbosity=0)
        # criterion = torch.nn.BCEWithLogitsLoss().to(device)
        criterion = CustomLoss(loss_weight).to(device)
        LOGGER.info(f"done amp setup")

        for epoch in range(1, epochs + 1):
            LOGGER.info(f"Starting {epoch} epoch...")
            LOGGER.info(f"length {len(X_train)} train {len(X_val)} train...")
            if epoch == 1:
                for param_group in optimizer.param_groups:
                    param_group['lr'] = base_lr * gammas[1]
            tr_loss, train_losses = train_one_epoch(model,
                                                    train_loader,
                                                    criterion,
                                                    optimizer,
                                                    device,
                                                    accumulation_steps,
                                                    total_step,
                                                    n_labels,
                                                    base_lr,
                                                    gamma=gammas[2 * epoch])
            LOGGER.info(f'Mean train loss: {round(tr_loss,5)}')

            torch.save(model.state_dict(),
                       '{}_epoch{}_fold{}.pth'.format(exp, epoch, fold_id))

            valid_loss, oof_pred = validate(model, valid_loader, criterion,
                                            device, n_labels)
            LOGGER.info(f'Mean valid loss: {round(valid_loss,5)}')

            if epochs > 1:
                test_df_cp = test_df.copy()
                test_df_cp["pred"] = oof_pred[:, 0]
                test_df_cp = convert_dataframe_to_bool(test_df_cp)
                bias_metrics_df = compute_bias_metrics_for_model(
                    test_df_cp, identity_columns)
                LOGGER.info(bias_metrics_df)

                score = get_final_metric(bias_metrics_df,
                                         calculate_overall_auc(test_df_cp))
                LOGGER.info(f'score is {score}')

        del model
        gc.collect()
        torch.cuda.empty_cache()

    test_df["pred"] = oof_pred[:, 0]
    test_df = convert_dataframe_to_bool(test_df)
    bias_metrics_df = compute_bias_metrics_for_model(test_df, identity_columns)
    LOGGER.info(bias_metrics_df)

    score = get_final_metric(bias_metrics_df, calculate_overall_auc(test_df))
    LOGGER.info(f'final score is {score}')

    test_df.to_csv("oof.csv", index=False)

    xs = list(range(1, len(train_losses) + 1))
    plt.plot(xs, train_losses, label='Train loss')
    plt.legend()
    plt.xticks(xs)
    plt.xlabel('Iter')
    plt.savefig("loss.png")
Exemple #23
0
def train_unfixed():
    # 配置文件
    cf = Config('./config.yaml')
    # 有GPU用GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # 训练数据
    train_data = NewsDataset("./data/cnews_final_train.txt", cf.max_seq_len)
    train_dataloader = DataLoader(train_data,
                                  batch_size=cf.batch_size,
                                  shuffle=True)
    # 测试数据
    test_data = NewsDataset("./data/cnews_final_test.txt", cf.max_seq_len)
    test_dataloader = DataLoader(test_data,
                                 batch_size=cf.batch_size,
                                 shuffle=True)

    # 模型
    config = BertConfig("./output/pytorch_bert_config.json")
    model = BertForSequenceClassification(config, num_labels=cf.num_labels)
    model.load_state_dict(torch.load("./output/pytorch_model.bin"))

    # 优化器用adam
    for param in model.parameters():
        param.requires_grad = True
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    num_train_optimization_steps = int(
        len(train_data) / cf.batch_size) * cf.epoch
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=cf.lr,
                         t_total=num_train_optimization_steps)

    # 把模型放到指定设备
    model.to(device)

    # 让模型并行化运算
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # 训练
    start_time = time.time()

    total_batch = 0  # 总批次
    best_acc_val = 0.0  # 最佳验证集准确率
    last_improved = 0  # 记录上一次提升批次
    require_improvement = 1500  # 如果超过1500轮未提升,提前结束训练

    # 获取当前验证集acc
    model.eval()
    _, best_acc_val = evaluate(model, test_dataloader, device)

    flag = False
    model.train()
    for epoch_id in range(cf.epoch):
        print("Epoch %d" % epoch_id)
        for step, batch in enumerate(
                tqdm(train_dataloader,
                     desc="batch",
                     total=len(train_dataloader))):
            # for step,batch in enumerate(train_dataloader):

            label_id = batch['label_id'].squeeze(1).to(device)
            word_ids = batch['word_ids'].to(device)
            segment_ids = batch['segment_ids'].to(device)
            word_mask = batch['word_mask'].to(device)

            loss = model(word_ids, segment_ids, word_mask, label_id)

            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

            total_batch += 1

            if total_batch % cf.print_per_batch == 0:
                model.eval()
                with torch.no_grad():
                    loss_train, acc_train = get_model_loss_acc(
                        model, word_ids, segment_ids, word_mask, label_id)
                loss_val, acc_val = evaluate(model, test_dataloader, device)

                if acc_val > best_acc_val:
                    # 保存最好结果
                    best_acc_val = acc_val
                    last_improved = total_batch

                    torch.save(model.state_dict(),
                               "./output/pytorch_model.bin")
                    with open("./output/pytorch_bert_config.json", 'w') as f:
                        f.write(model.config.to_json_string())

                    improved_str = "*"
                else:
                    improved_str = ""

                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
                      + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                print(
                    msg.format(total_batch, loss_train, acc_train, loss_val,
                               acc_val, time_dif, improved_str))

                model.train()

            if total_batch - last_improved > require_improvement:
                print("长时间未优化")
                flag = True
                break
        if flag:
            break