Exemple #1
0
def get_optimizer(model, args, data_loader):
    # We use OpenAIAdam because that's what run_openai_gpt used
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    num_train_optimization_steps = len(data_loader) * args.num_train_epochs

    if args.optimizer == 'openai':
        optimizer = OpenAIAdam(
            optimizer_grouped_parameters,
            lr=args.learning_rate,
            warmup=args.warmup_proportion,
            max_grad_norm=args.max_grad_norm,
            weight_decay=args.weight_decay,
            schedule=args.lr_schedule,
            b2=.99,  # instead of .999
            t_total=num_train_optimization_steps)
    else:
        optimizer = torch.optim.Adam(optimizer_grouped_parameters,
                                     lr=args.learning_rate,
                                     betas=(0.9, 0.99),
                                     eps=1e-08,
                                     weight_decay=args.weight_decay,
                                     amsgrad=False)
        optimizer.get_lr = lambda: [p['lr'] for p in optimizer.param_groups]
    return optimizer
Exemple #2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        type=str,
                        default='gpt2',
                        help='pretrained model name')
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument('--train_dataset', type=str, default='')
    parser.add_argument('--eval_dataset', type=str, default='')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.9)
    parser.add_argument('--n_valid', type=int, default=374)

    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print('{} is on use...'.format(device))
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = GPT2Tokenizer.from_pretrained(args.model_name,
                                              special_tokens=special_tokens)
    special_tokens_ids = list(
        tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    # model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))
    model = GPT2DoubleHeadsModel.from_pretrained(
        args.model_name, num_special_tokens=len(special_tokens))
    #     GPT2DoubleHeadsModel.set_num_special_tokens(model, len(special_tokens))
    model.to(device)

    # Load and encode the datasets
    if not args.train_dataset and not args.eval_dataset:
        roc_stories = cached_path(ROCSTORIES_URL)

    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        return list(tokenize_and_encode(o) for o in obj)

    logger.info("Encoding dataset...")
    train_dataset = load_rocstories_dataset(args.train_dataset)
    eval_dataset = load_rocstories_dataset(args.eval_dataset)
    datasets = (train_dataset, eval_dataset)
    encoded_datasets = tokenize_and_encode(datasets)

    # Compute the max input length for the Transformer
    max_length = model.config.n_positions // 2 - 2
    input_length = max(len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3  \
                           for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
    input_length = min(input_length, model.config.n_positions
                       )  # Max size of input for the pre-trained model

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length,
                                           max_length, *special_tokens_ids)
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[
        0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        num_train_optimization_steps = len(
            train_dataloader) * args.num_train_epochs
        optimizer = OpenAIAdam(optimizer_grouped_parameters,
                               lr=args.learning_rate,
                               warmup=args.warmup_proportion,
                               max_grad_norm=args.max_grad_norm,
                               weight_decay=args.weight_decay,
                               t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_ids, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]
                loss.backward()
                optimizer.step()
                optimizer.zero_grad()
                tr_loss += loss.item()
                exp_average_loss = loss.item(
                ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item(
                )
                nb_tr_steps += 1
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

    # Save a trained model
    if args.do_train:
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = GPT2DoubleHeadsModel.from_pretrained(args.output_dir)
        tokenizer = GPT2Tokenizer.from_pretrained(args.output_dir)
        model.to(device)

    if args.do_eval:
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, mc_token_ids, lm_labels, mc_labels = batch
            with torch.no_grad():
                _, mc_loss = model(input_ids, mc_token_ids, lm_labels,
                                   mc_labels)
                _, mc_logits = model(input_ids, mc_token_ids)

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        train_loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'train_loss': train_loss
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name', type=str, default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--output_dir", default='tuned_gpt2', type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument('--train_dataset', type=str, default='')
    
    parser.add_argument('--source_eval', type=str, default='')
    parser.add_argument('--target_eval', type=str, default='')
    parser.add_argument('--source_train', type=str, default='')
    parser.add_argument('--target_train', type=str, default='')
    
    
    parser.add_argument('--eval_dataset', type=str, default='')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=10)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--effective_batch_size',type=int, default=64)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.9)
    parser.add_argument('--n_valid', type=int, default=374)
    parser.add_argument('--bsz', type=int, default = 20)
    parser.add_argument('--bptt', type=int, default = 40)

    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()
#    print(args)

    model_type = 'gpt2'


    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

#    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device = torch.device(type='cuda')
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

#    if not args.do_train and not args.do_eval:
#        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
        

    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    model = GPT2LMHeadModel.from_pretrained('gpt2').to('cuda')

    model.to(device)


    #file_train = args.train_dataset #'cnn_train.txt'
    #file_eval =  args.eval_dataset #'cnn_valid.txt'
    bptt = args.bptt
    bsz = args.bsz
    

#    X_eval, nbatch_eval = load_dataset(file_eval, tokenizer, bptt, bsz)
#    X_train, nbatch_train =  load_dataset(file_train, tokenizer, bptt, bsz)
    
    batches_eval, labels_eval, nbatch_eval = load_dataset(args.source_eval, args.target_eval, tokenizer, bptt, bsz)
    batches_train, labels_train, nbatch_train =  load_dataset(args.source_train, args.target_train, tokenizer, bptt, bsz)
    
    

    # Prepare optimizer
#    param_optimizer = list(model.parameters())
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    
    print('here 3')
#    num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
    num_train_optimization_steps = nbatch_train * args.num_train_epochs
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=args.weight_decay,
                           t_total=num_train_optimization_steps)

    eval_loss_min = None
    print('here 4')
    model.to(device)

    nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
    model.train()
    for epoch_i in trange(int(args.num_train_epochs), desc="Epoch"):
        tr_loss = 0
        nb_tr_steps = 0
        
        for i_batch in tqdm(list(range(nbatch_train)), desc='Evaluating epoch {}'.format(epoch_i)):
            batch = batches_train[i_batch]#X_train[:, i_batch*bsz:(1+i_batch)*bsz].permute(1,0)
            
            batch = batch.cuda()
            lm_labels = labels_train[i_batch].cuda()
            if batch.numel() == 0:
                break
            
            #loss = model(batch, lm_labels = labels_train[i_batch].cuda())
                            # TRY DOING IT MANUALLY
            loss_fct = CrossEntropyLoss(reduction = 'none')
            lm_logits,_ = model(batch)
            shift_logits = lm_logits[:, :-1, :].contiguous()
            shift_labels = batch[:,1:].contiguous()
            
            shift_labels_mask = (lm_labels[:,1:].contiguous().view(-1) != -1).float()
            
            loss_mat = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                        shift_labels.view(-1))
            loss = (loss_mat*shift_labels_mask).view(-1).sum()/shift_labels_mask.sum() # avg over non-masked indices
            
            loss.backward()
            
            # only step the model if you've gone through 'effective_batch_size' examples
            if (i_batch*args.train_batch_size) % args.effective_batch_size == 0 and i_batch != 0:
                optimizer.step()
                optimizer.zero_grad()
                
            tr_loss += loss.item()
            

            exp_average_loss = loss.item() if exp_average_loss is None else 0.7*exp_average_loss+0.3*loss.item()
            nb_tr_steps += 1
         
            
            
            ###
            # Evaluations
            ###
            
            
            if i_batch % 1000 == 0: # get eval score
                eval_loss = eval_model(model, nbatch_eval,batches_eval,labels_eval, bsz)
                
                # if eval_loss improves, save model
                if eval_loss_min is None or eval_loss < eval_loss_min:
                    eval_loss_min = eval_loss
                    
                    # save model if eval loss is lower
                    model_to_save = model
                    # If we save using the predefined names, we can load using `from_pretrained`
                    output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
                    output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        
                    torch.save(model_to_save.state_dict(), output_model_file)
                    to_json_file(model_to_save.config,output_config_file)
                
                print('eval_loss {}',format(eval_loss))
                model.train()
                
            if i_batch % 200 == 0: # try generating from model 
                print("Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, optimizer.get_lr()[0]))

                model.eval()
                if model_type == 'gpt':
                    encode = lambda a: tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a))
                    decode = tokenizer.decode
                elif model_type == 'gpt2':
                    encode = tokenizer.encode
                    decode = tokenizer.decode
                
                generate_from_model(encode, decode, model = model,model_type = model_type)
                model.train()
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default='/hdd/user4/gpt_classification/dataset/ag_news',
                        type=str,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument('--model_name', type=str, default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--task_name",
                        default='ag_news',
                        type=str,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default='/hdd/user4/gpt_classification/experiment/ag_news',
                        type=str,
                        help="The output directory where the model predictions and checkpoints will be written.")

    parser.add_argument("--max_grad_norm",
                        default=1)
    parser.add_argument('--weight_decay', type=float, default=0.0)

    ## Other parameters
    parser.add_argument("--cache_dir",
                        default='/hdd/user4/gpt_classification/pretrained',
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=True,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=True,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=9.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        default=True,
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        # n_gpu = torch.cuda.device_count()
        n_gpu = 1
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    args.device = device

    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name](args.data_dir)
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
    model = OpenAIGPTForClassification.from_pretrained(args.model_name,
                                                       num_special_tokens=len(special_tokens),
                                                       num_labels=num_labels)
    if args.local_rank == 0:
        torch.distributed.barrier()

    model.to(device)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    tr_loss = 0

    if args.do_train:
        if args.local_rank in [-1, 0]:
            tb_writer = SummaryWriter()

        # Prepare data loader
        train_examples = processor.get_train_examples()
        cached_train_features_file = os.path.join(args.data_dir, 'train_{0}_{1}_{2}'.format(
            list(filter(None, args.model_name.split('/'))).pop(),
            str(args.max_seq_length),
            str(task_name)))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        # Prepare optimizer
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
        num_train_optimization_steps = len(train_dataloader) * args.num_train_epochs
        optimizer = OpenAIAdam(optimizer_grouped_parameters,
                               lr=args.learning_rate,
                               warmup=args.warmup_proportion,
                               max_grad_norm=args.max_grad_norm,
                               weight_decay=args.weight_decay,
                               t_total=num_train_optimization_steps)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        for _ in range(int(args.num_train_epochs)):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, _, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model.forward(input_ids, input_mask)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                    if args.local_rank in [-1, 0]:
                        tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                        tb_writer.add_scalar('loss', loss.item(), global_step)

        tb_writer.close()

    ### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        output_args_file = os.path.join(args.output_dir, 'training_args.bin')
        torch.save(args, output_args_file)

    # Load a trained model and vocabulary that you have fine-tuned
    model = OpenAIGPTForClassification.from_pretrained(args.output_dir,
                                                       num_labels=num_labels)

    model.to(device)

    ### Evaluation
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples()
        cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format(
            list(filter(None, args.model_name.split('/'))).pop(),
            str(args.max_seq_length),
            str(task_name)))
        try:
            with open(cached_eval_features_file, "rb") as reader:
                eval_features = pickle.load(reader)
        except:
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving eval features into cached file %s", cached_eval_features_file)
                with open(cached_eval_features_file, "wb") as writer:
                    pickle.dump(eval_features, writer)

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)

        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)  # Note that this sampler samples randomly
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
        out_label_ids = None


        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model.forward(input_ids, input_mask)

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
                out_label_ids = label_ids.detach().cpu().numpy()
            else:
                preds[0] = np.append(
                    preds[0], logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(
                    out_label_ids, label_ids.detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        if output_mode == "classification":
            output_odp = []
            for arr in preds:
                t = (-arr).argsort()[:5]
                output_odp.append(t.tolist())
            file_path = 'D:/바탕화면/(논문)multi-pretraining/NYT'
            with open('gpt_top5.pkl','wb') as f:
                pickle.dump(output_odp,f)


            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(task_name, preds, out_label_ids)
        print('preds:',preds,'label:',out_label_ids)

        loss = tr_loss / global_step if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

            if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train:
                raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
            all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []
            out_label_ids = None

            for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=None)

                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))

                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                    out_label_ids = label_ids.detach().cpu().numpy()
                else:
                    preds[0] = np.append(
                        preds[0], logits.detach().cpu().numpy(), axis=0)
                    out_label_ids = np.append(
                        out_label_ids, label_ids.detach().cpu().numpy(), axis=0)

            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, out_label_ids)

            loss = tr_loss / global_step if args.do_train else None

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
Exemple #5
0
def main():
    # Parse the arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        type=str,
                        default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument('--train_dataset', type=str, default='')
    parser.add_argument('--eval_dataset', type=str, default='')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=1)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.9)
    parser.add_argument('--n_valid', type=int, default=374)
    parser.add_argument('--max_seq_length', type=int, default=110)

    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Set the seed for random, numpy, PyTorch
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned
    special_tokens = ['<POS>', '<NEG>', '<CON_START>', '<START>', '<END>']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(
        args.model_name, special_tokens=special_tokens)
    start_token_id = tokenizer.convert_tokens_to_ids(['<START>'])[0]
    model = OpenAIGPTLMHeadModel.from_pretrained(
        args.model_name, num_special_tokens=len(special_tokens))
    model.to(device)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Load and encode dataset
    def tokenize_and_encode(file_path):
        '''
        This method tokenizes the input data and encodes it using the OpenAIGPTTokenizer
        :param file_path: Path of the input file, dtype: str
        :return: encoded dataset  dtype: list
        '''
        with open(file_path, 'r') as in_fp:
            lines = in_fp.read().splitlines()

        tokenized_dataset = lines
        for i, line in enumerate(tqdm(lines)):
            token = tokenizer.tokenize(line)[:512]
            tokenized_dataset[i] = tokenizer.convert_tokens_to_ids(token)
        return tokenized_dataset

    logger.info("Encoding dataset...")
    train_dataset = tokenize_and_encode(args.train_dataset)
    eval_dataset = tokenize_and_encode(args.eval_dataset)
    print("Training samples = {}".format(len(train_dataset)))
    print("Validation samples = {}".format(len(eval_dataset)))
    print("Example = {}".format(train_dataset[0]))
    time.sleep(2)
    # Compute the mex input length for the Transformer
    train_dataset = [
        x for x in train_dataset
        if len(x) <= args.max_seq_length and start_token_id in x
    ]  # Remove all sentence longer than max_seq_length
    eval_dataset = [
        x for x in eval_dataset
        if len(x) <= args.max_seq_length and start_token_id in x
    ]
    input_length = max(max(len(t) for t in train_dataset),
                       max(len(q) for q in eval_dataset))
    if n_gpu > 1:
        input_length = min(input_length, model.module.config.n_positions)
    else:
        input_length = min(input_length, model.config.n_positions
                           )  # Max size of input for the pre-trained model
    print("Input Length = {}".format(input_length))

    def pre_process_dataset(encoded_dataset, input_length, start_token_id):
        """
        This method is to create torch tensor of input ids and lm labels
        :param encoded_dataset: Input dataset, dtype: list
        :param input_length: Maximum length of sentence from training and eval dataset, dtype: int
        :param start_token_id: id of the '<START>' token, dtype: int
        :return: torch.tensor of size [len(encoded_dataset), 2]
        """

        n_batch = len(encoded_dataset)
        input_ids = np.zeros(shape=(n_batch, input_length), dtype=np.int64)
        lm_labels = np.full(shape=(n_batch, input_length),
                            fill_value=-1,
                            dtype=np.int64)

        for i, tokens in enumerate(encoded_dataset):
            try:
                #tokens = tokens[:input_length]
                start_id_index = tokens.index(start_token_id)
                input_ids[i, :len(tokens)] = tokens
                start_id_index = tokens.index(start_token_id)
                lm_labels[i, start_id_index:len(tokens) -
                          1] = tokens[start_id_index + 1:len(tokens)]
                # LM loss calculate only for tokens after <START> token in the sentence
                #lm_labels[i, :len(tokens)-1] = tokens[1:]
            except ValueError:
                print("Index {} doesn't have start token".format(i))

        input_ids = torch.tensor(input_ids)
        lm_labels = torch.tensor(lm_labels)
        tensor_dataset = (input_ids, lm_labels)
        #tensor_dataset.append(torch.tensor(d) for d in all_inputs)

        return tensor_dataset

    # Prepare input tensors and dataloders
    train_tensor_dataset = pre_process_dataset(train_dataset,
                                               input_length,
                                               start_token_id=start_token_id)
    eval_tensor_dataset = pre_process_dataset(eval_dataset,
                                              input_length,
                                              start_token_id=start_token_id)

    print("Training Example Input ids= {}".format(train_tensor_dataset[0][0]))
    print("Training Example Language Modeling ids = {}".format(
        train_tensor_dataset[1][0]))
    time.sleep(10)
    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = RandomSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    num_train_optimization_steps = len(
        train_data) * args.num_train_epochs // args.train_batch_size
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=args.weight_decay,
                           t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, lm_labels = batch
                loss = model(input_ids, lm_labels=lm_labels)
                if n_gpu > 1:
                    loss.mean().backward()
                else:
                    loss.backward()
                optimizer.step()
                optimizer.zero_grad()
                if n_gpu > 1:
                    tmp_loss = loss.mean().item()
                else:
                    tmp_loss = loss.item()
                exp_average_loss = tmp_loss if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * tmp_loss
                nb_tr_steps += 1
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(
                args.output_dir,
                "pytorch_model_zero_grad_{}.bin".format(epoch + 1))
            config = model.module.config if hasattr(model,
                                                    'module') else model.config
            torch.save(model_to_save.state_dict(), output_model_file)

            model_state_dict = torch.load(output_model_file)
            model = OpenAIGPTLMHeadModel(config)
            model.load_state_dict(model_state_dict)
            model.to(device)
            if n_gpu > 1:
                model = torch.nn.DataParallel(model)

    if args.do_eval:
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, lm_labels = batch
            with torch.no_grad():
                lm_loss = model(input_ids, lm_labels=lm_labels)

            eval_loss += lm_loss.mean().item()

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        train_loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {'eval_loss': eval_loss, 'train_loss': train_loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name', type=str, default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument('--task', type=str, default='intent',
                        choices=['intent', 'slot'], help="Intent or slot prediction")
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument('--train_dataset', type=str, default='')
    parser.add_argument('--eval_dataset', type=str, default='')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.0)
    parser.add_argument('--probabilistic_masks', action='store_true')
    parser.add_argument('--attn_bias', action='store_true')
    parser.add_argument('--linearize', action='store_true')
    args = parser.parse_args()
    print(args)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    label_list = list()
    for line in open(LABEL_FILES[args.task]):
        label_list.append(line.strip())

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsClsModel.from_pretrained(args.model_name, num_labels=len(label_list), num_special_tokens=len(special_tokens))
    model.to(device)

    # Load and encode the datasets
    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        elif isinstance(obj, np.ndarray):
            return obj
        return list(tokenize_and_encode(o) for o in obj)

    logger.info("Encoding dataset...")
    train_dataset = load_atis_dataset(args.train_dataset, label_list, tokenizer, args.probabilistic_masks, args.linearize)
    eval_dataset = load_atis_dataset(args.eval_dataset, label_list, tokenizer, args.probabilistic_masks, args.linearize, plot=False)
    datasets = (train_dataset, eval_dataset)
    encoded_datasets = tokenize_and_encode(datasets)

    # Compute the max input length for the Transformer
    max_length = model.config.n_positions - 2
    input_length = max(len(utt[:max_length]) + 2  \
                           for dataset in encoded_datasets for utt, _, _, _, _ in dataset)
    input_length = min(input_length, model.config.n_positions)  # Max size of input for the pre-trained model

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_length, *special_tokens_ids, len(label_list))
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        num_train_optimization_steps = len(train_dataloader) * args.num_train_epochs
        optimizer = OpenAIAdam(optimizer_grouped_parameters,
                               lr=args.learning_rate,
                               warmup=args.warmup_proportion,
                               max_grad_norm=args.max_grad_norm,
                               weight_decay=args.weight_decay,
                               t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        model.train()
        results = []
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_ids, pos_ids, attn_bias, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_ids, lm_labels, mc_labels, position_ids=pos_ids, attn_bias=attn_bias if args.attn_bias else None)
                # loss = args.lm_coef * losses[0] + losses[1]
                loss = losses[1]
                loss.backward()
                optimizer.step()
                optimizer.zero_grad()
                tr_loss += loss.item()
                exp_average_loss = loss.item() if exp_average_loss is None else 0.7*exp_average_loss+0.3*loss.item()
                nb_tr_steps += 1
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, optimizer.get_lr()[0])

            model.eval()
            eval_loss = 0
            nb_eval_steps, nb_eval_examples = 0, 0
            all_logits, all_labels = [], []
            for batch in tqdm(eval_dataloader, desc="Evaluating"):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_ids, pos_ids, attn_bias, lm_labels, mc_labels = batch
                with torch.no_grad():
                    _, mc_loss = model(input_ids, mc_token_ids, lm_labels, mc_labels, position_ids=pos_ids, attn_bias=attn_bias if args.attn_bias else None)
                    _, mc_logits = model(input_ids, mc_token_ids, position_ids=pos_ids, attn_bias=attn_bias if args.attn_bias else None)

                mc_logits = mc_logits.detach().cpu().numpy()
                mc_labels = mc_labels.to('cpu').numpy()

                eval_loss += mc_loss.mean().item()
                all_logits.append(mc_logits)
                all_labels.append(mc_labels)

                nb_eval_examples += input_ids.size(0)
                nb_eval_steps += 1

            eval_loss = eval_loss / nb_eval_steps
            all_logits = np.concatenate(all_logits, axis=0)
            all_labels = np.concatenate(all_labels, axis=0)
            eval_f1 = f1(all_logits, all_labels)
            eval_acc = accuracy(all_logits, all_labels) / nb_eval_examples
            train_loss = tr_loss/nb_tr_steps if args.do_train else None
            result = {'eval_loss': eval_loss,
                      'eval_f1': eval_f1,
                      'eval_accuracy': eval_acc,
                      'train_loss': train_loss}
            print(result)
            results.append(result)

        with open(os.path.join(args.output_dir, "log.csv"), "w") as csvfile:
            writer = csv.DictWriter(
                csvfile,
                ["train_loss", "eval_loss", "eval_accuracy", "eval_f1"]
            )
            writer.writeheader()
            writer.writerows(results)

    # Save a trained model
    if args.do_train:
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = OpenAIGPTDoubleHeadsClsModel.from_pretrained(
            args.output_dir,num_labels=len(label_list), num_special_tokens=len(special_tokens))
        tokenizer = OpenAIGPTTokenizer.from_pretrained(args.output_dir)
        model.to(device)

    if args.do_eval:
        model.eval()
        eval_loss = 0
        nb_eval_steps, nb_eval_examples = 0, 0
        all_logits, all_labels = [], []
        fw = open("prediction.txt", "w")
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, mc_token_ids, pos_ids, attn_bias, lm_labels, mc_labels = batch
            with torch.no_grad():
                _, mc_loss = model(input_ids, mc_token_ids, lm_labels, mc_labels, position_ids=pos_ids, attn_bias=attn_bias if args.attn_bias else None)
                _, mc_logits = model(input_ids, mc_token_ids, position_ids=pos_ids, attn_bias=attn_bias if args.attn_bias else None)

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()

            for i, (o, l) in enumerate(zip((mc_logits>=0.5).astype(np.int32), mc_labels.astype(np.int32))):
                # if np.any(o != l):
                # pred = [label_list[idx] for idx, val in enumerate(o) if val == 1]
                # true = [label_list[idx] for idx, val in enumerate(l) if val == 1]
                pred = o
                true = l
                fw.write(f"{eval_dataset[nb_eval_examples+i][0]}\n{pred}\n{true}\n\n")

            eval_loss += mc_loss.mean().item()
            all_logits.append(mc_logits)
            all_labels.append(mc_labels)

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        fw.close()
        eval_loss = eval_loss / nb_eval_steps
        all_logits = np.concatenate(all_logits, axis=0)
        all_labels = np.concatenate(all_labels, axis=0)
        eval_f1 = f1(all_logits, all_labels)
        eval_acc = accuracy(all_logits, all_labels) / nb_eval_examples
        train_loss = tr_loss/nb_tr_steps if args.do_train else None
        result = {'eval_loss': eval_loss,
                  'eval_f1': eval_f1,
                  'eval_accuracy': eval_acc,
                  'train_loss': train_loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
Exemple #7
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .csv files (or other data files) for the task."
    )
    parser.add_argument('--model_name',
                        type=str,
                        default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--answer_only",
        default=False,
        action='store_true',
        help="Whether to run with answers only (blank out question).")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument(
        "--load_model_from",
        default=None,
        type=str,
        help=
        "The saved model file to load before doing any training or eval (if both --do_train and --do_eval are specified, the saved model will be loaded, then trained, then the trained model will be evaluated)."
    )
    parser.add_argument(
        '--train_filename',
        type=str,
        default='train.csv',
        help="Filename to load train data from (relative to data_dir)")
    parser.add_argument(
        '--eval_filename',
        type=str,
        default='val.csv',
        help="File to load eval data from (relative to data_dir)")
    parser.add_argument(
        '--data_format',
        type=str,
        choices=['swag', 'codah'],
        default='swag',
        help=
        "Format of the train and eval files (original SWAG CSV format vs our TSV format)"
    )
    parser.add_argument(
        '--model_labels_save_filename',
        type=str,
        default='model_labels.json',
        help=
        "JSON file to save model outputs/labels to (relative to output_dir)")
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=32)
    parser.add_argument('--eval_batch_size', type=int, default=8)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.5)
    parser.add_argument('--n_valid', type=int, default=374)
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=8,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )

    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    if args.do_eval and (not args.do_train) and args.load_model_from is None:
        args.load_model_from = os.path.join(args.output_dir,
                                            'pytorch_model.bin')

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(
        args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(
        tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(
        args.model_name, num_special_tokens=len(special_tokens))

    config = model.config
    if args.load_model_from:
        model_state_dict = torch.load(args.load_model_from)
        model = OpenAIGPTDoubleHeadsModel(config)
        model.load_state_dict(model_state_dict)
    model.to(device)

    # Load and encode the datasets
    logger.info("Loading datasets...")
    datasets = []
    dataset_keys = dict()
    if args.do_train:
        train_dataset = read_swag_examples(os.path.join(
            args.data_dir, args.train_filename),
                                           is_training=True,
                                           answer_only=args.answer_only,
                                           data_format=args.data_format)
        train_dataset = [
            EncodedSwagExample(ex, tokenizer)
            for ex in tqdm(train_dataset, desc='Encoding train')
        ]
        dataset_keys['train'] = len(datasets)
        datasets.append(train_dataset)

    if args.do_eval:
        eval_dataset = read_swag_examples(os.path.join(args.data_dir,
                                                       args.eval_filename),
                                          is_training=True,
                                          answer_only=args.answer_only,
                                          data_format=args.data_format)
        eval_dataset = [
            EncodedSwagExample(ex, tokenizer)
            for ex in tqdm(eval_dataset, desc='Encoding eval')
        ]
        dataset_keys['eval'] = len(datasets)
        datasets.append(eval_dataset)

    # Compute the max input length for the Transformer
    max_length = model.config.n_positions // 2 - 2
    input_length = max(len(swagex.context_tokens[:max_length]) + len(swagex.start_ending_tokens[:max_length]) + max(len(ending[:max_length]) for ending in swagex.endings_tokens) + 3  \
                           for dataset in datasets for swagex in dataset)
    input_length = min(input_length, model.config.n_positions
                       )  # Max size of input for the pre-trained model
    print('---')
    print('Input length: {}\n'.format(input_length))
    print('---')

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(datasets, input_length, max_length,
                                           *special_tokens_ids)
    if args.do_train:
        train_tensor_dataset = tensor_datasets[dataset_keys['train']]
    if args.do_eval:
        eval_tensor_dataset = tensor_datasets[dataset_keys['eval']]

    # Prepare optimizer
    if args.do_train:
        train_data = TensorDataset(*train_tensor_dataset)
        train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        #num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
        num_train_optimization_steps = int(
            len(train_data) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        optimizer = OpenAIAdam(optimizer_grouped_parameters,
                               lr=args.learning_rate,
                               warmup=args.warmup_proportion,
                               max_grad_norm=args.max_grad_norm,
                               weight_decay=args.weight_decay,
                               t_total=num_train_optimization_steps)

        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_ids, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()

                tr_loss += loss.item()
                nb_tr_steps += 1
                exp_average_loss = loss.item(
                ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item(
                )
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()
                    optimizer.zero_grad()

    # Save a trained model
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    if args.do_train:
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        torch.save(model_to_save.state_dict(), output_model_file)

    if args.do_eval:
        eval_data = TensorDataset(*eval_tensor_dataset)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        # Load a trained model that you have fine-tuned
        if args.do_train:
            model_state_dict = torch.load(output_model_file)
            model = OpenAIGPTDoubleHeadsModel(config)
            model.load_state_dict(model_state_dict)
            model.to(device)
        model.eval()

        all_model_outputs = []
        data_index = 0

        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, mc_token_ids, lm_labels, mc_labels = batch
            with torch.no_grad():
                _, mc_loss = model(input_ids, mc_token_ids, lm_labels,
                                   mc_labels)
                _, mc_logits = model(input_ids, mc_token_ids)

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            for i in range(input_ids.size(0)):
                output_obj = dict()
                output_obj['logits'] = [float(x) for x in mc_logits[i]]
                output_obj['true_label'] = int(mc_labels[i])
                output_obj['model_label'] = int(np.argmax(mc_logits[i]))
                output_obj['swag_data'] = datasets[
                    dataset_keys['eval']][data_index].raw_example.to_dict()
                all_model_outputs.append(output_obj)
                data_index += 1

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        train_loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'train_loss': train_loss
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        with open(
                os.path.join(args.output_dir, args.model_labels_save_filename),
                'w') as f:
            json.dump(all_model_outputs, f)
Exemple #8
0
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_lengths, lm_labels = batch
                loss = model(input_ids=input_ids, lm_labels=lm_labels)
                if n_gpu > 1:
                    loss = loss.mean()
                loss.backward()
                optimizer.step()
                optimizer.zero_grad()
                tr_loss += loss.item()
                exp_average_loss = loss.item(
                ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item(
                )
                nb_tr_steps += 1
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

            # Save a trained model
            if args.do_train:
                epoch_root = os.path.join(args.output_dir, args.ft_name,
                                          'epoch' + str(epoch))
                pathlib.Path(epoch_root).mkdir(parents=True, exist_ok=True)
                # Save a trained model, configuration and tokenizer
                model_to_save = original_model.module if hasattr(
                    original_model, 'module'
                ) else original_model  # Only save the model it-self

                # If we save using the predefined names, we can load using `from_pretrained`
                output_model_file = os.path.join(epoch_root, WEIGHTS_NAME)
                output_config_file = os.path.join(epoch_root, CONFIG_NAME)
Exemple #9
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        type=str,
                        default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument('--train_dataset', type=str, default='')
    parser.add_argument('--eval_dataset', type=str, default='')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.9)
    parser.add_argument('--n_valid', type=int, default=374)

    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(
        args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(
        tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(
        args.model_name, num_special_tokens=len(special_tokens))
    model.to(device)

    # Load and encode the datasets
    if not args.train_dataset and not args.eval_dataset:
        roc_stories = cached_path(ROCSTORIES_URL)

    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        return list(tokenize_and_encode(o) for o in obj)

    logger.info("Encoding dataset...")
    train_dataset = load_csqa_dataset(args.train_dataset)

    print("Splitting train 90-10 into train-dev.")
    dev_dataset = train_dataset[int(len(train_dataset) * 0.9):]
    train_dataset = train_dataset[:int(len(train_dataset) * 0.9)]
    test_dataset = load_csqa_dataset(args.eval_dataset)
    datasets = (train_dataset, dev_dataset, test_dataset)
    encoded_datasets = tokenize_and_encode(datasets)

    # Compute the mex input length for the Transformer
    max_length = model.config.n_positions // 2 - 2
    input_length = max(
        len(question[:max_length]) +
        max(len(answer1[:max_length]), len(answer2[:max_length]),
            len(answer3[:max_length])) + 3 for dataset in encoded_datasets
        for question, answer1, answer2, answer3, _ in dataset)
    input_length = min(input_length, model.config.n_positions
                       )  # Max size of input for the pre-trained model

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length,
                                           max_length, *special_tokens_ids)
    train_tensor_dataset = tensor_datasets[0]
    dev_tensor_dataset = tensor_datasets[1]
    test_tensor_dataset = tensor_datasets[2]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    dev_data = TensorDataset(*dev_tensor_dataset)
    dev_sampler = RandomSampler(dev_data)
    dev_dataloader = DataLoader(dev_data,
                                sampler=dev_sampler,
                                batch_size=args.train_batch_size)

    test_data = TensorDataset(*test_tensor_dataset)
    test_sampler = SequentialSampler(test_data)
    test_dataloader = DataLoader(test_data,
                                 sampler=test_sampler,
                                 batch_size=args.eval_batch_size)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    num_train_optimization_steps = len(
        train_data) * args.num_train_epochs // args.train_batch_size
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=args.weight_decay,
                           t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        best_dev_accuracy = 0
        test_acc_best_dev = 0
        best_dev_epoch = 0
        no_up = 0
        tqdm_epoch = tqdm(range(args.num_train_epochs), desc="Epoch")
        for epoch in tqdm_epoch:
            model.train()

            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_ids, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]

                loss.backward()
                optimizer.step()
                optimizer.zero_grad()

                tr_loss += loss.item()
                exp_average_loss = loss.item(
                ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item(
                )
                nb_tr_steps += 1
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

            # train_loss, train_accuracy = evaluate(model, device, train_dataloader, desc="Evaluate Train")
            dev_loss, dev_accuracy = evaluate(model,
                                              device,
                                              dev_dataloader,
                                              desc="Evaluate Dev")
            test_loss, test_accuracy = evaluate(model,
                                                device,
                                                test_dataloader,
                                                desc="Evaluate Test")

            train_loss = tr_loss / nb_tr_steps if args.do_train else None

            if dev_accuracy >= best_dev_accuracy:
                # New best model.
                best_dev_accuracy = dev_accuracy
                test_acc_best_dev = test_accuracy
                best_dev_epoch = epoch + 1
                no_up = 0

                # Save the new best model.
                model_to_save = model.module if hasattr(
                    model, 'module') else model  # Only save the model it-self
                output_model_file = os.path.join(args.output_dir,
                                                 "pytorch_model.bin")
                torch.save(model_to_save.state_dict(), output_model_file)
            else:
                no_up += 1

            tqdm.write("\t ***** Eval results (Epoch %s) *****" %
                       str(epoch + 1))
            # tqdm.write("\t train_accuracy = %s" % str(train_accuracy))
            tqdm.write("\t dev_accuracy = %s" % str(dev_accuracy))
            tqdm.write("")
            tqdm.write("\t best_dev_accuracy = %s" % str(best_dev_accuracy))
            tqdm.write("\t test_acc_best_dev = %s" % str(test_acc_best_dev))
            tqdm.write("\t best_dev_epoch = %s" % str(best_dev_epoch))
            tqdm.write("\t no_up = %s" % str(no_up))
            tqdm.write("")

            if no_up >= 10:
                tqdm_epoch.close()
                break
def main():
    # Pre-train model: eval_ppl = 104.29582476475977
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        type=str,
                        default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument('--train_dataset', type=str, default='')
    parser.add_argument('--eval_dataset', type=str, default='')
    parser.add_argument('--dataset', type=str, default='')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.9)
    parser.add_argument('--n_valid', type=int, default=374)

    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    # args = parser.parse_args()
    args = parser.parse_args([  #'--do_train',
        '--do_eval', '--dataset=../data/convai2/train_both_original.txt',
        '--dataset=data/convai2/convai2_data.models',
        '--output_dir=./language-quality-subreward/gpt_output/'
    ])
    print(args)

    # This commented code was used for parsing and pickling data from the original data file.
    '''
    data = Parser(persona_limit=None, set_relation=None)
    print('Parsing...')
    data.parse(args.dataset)
    file_utils.save_model('data/convai2', data, '.models', 'convai2_data')
    '''
    data = file_utils.read_model('', args.dataset, '')
    data = list(chain(*data.conversation))
    #data = data[: 10]
    train_data_org = data[:int(0.9 * len(data))]
    eval_data_org = data[int(0.9 * len(data)):]
    del data
    print('')

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(
        args.model_name, cache_dir="./cache/", special_tokens=special_tokens)
    special_tokens_ids = list(
        tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTLMHeadModel.from_pretrained(
        args.model_name,
        cache_dir="./cache/",
        num_special_tokens=len(special_tokens))
    model.to(device)
    '''
    # Load and encode the datasets
    if not args.train_dataset and not args.eval_dataset:
        roc_stories = cached_path(ROCSTORIES_URL)
    '''
    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        return list(tokenize_and_encode(o) for o in obj)

    logger.info("Encoding dataset...")
    train_dataset = train_data_org
    eval_dataset = eval_data_org

    datasets = (train_dataset, eval_dataset)
    encoded_datasets = tokenize_and_encode(datasets)

    # Compute the max input length for the Transformer
    max_length = model.config.n_positions // 2 - 2
    input_length = max(len(sent[:max_length]) + 2  \
                           for dataset in encoded_datasets for sent in dataset)
    input_length = min(input_length, model.config.n_positions
                       )  # Max size of input for the pre-trained model

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length,
                                           max_length, *special_tokens_ids)
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[
        0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    num_train_optimization_steps = len(
        train_data) * args.num_train_epochs // args.train_batch_size
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=args.weight_decay,
                           t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, lm_labels = batch
                loss = model(input_ids, lm_labels=lm_labels)
                loss.backward()
                optimizer.step()
                optimizer.zero_grad()
                tr_loss += loss.item()
                exp_average_loss = loss.item(
                ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item(
                )
                nb_tr_steps += 1
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

    # Save a trained model
    if args.do_train:
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        config = model.config
        torch.save(model_to_save.state_dict(), output_model_file)

        # Yue: save the config:
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model that you have fine-tuned
        '''
        model_state_dict = torch.load(output_model_file)
        model = OpenAIGPTLMHeadModel(config)
        model.load_state_dict(model_state_dict)
        model.to(device)
        '''

    if args.do_eval:
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        config = OpenAIGPTConfig(output_config_file)

        # Load a trained model that you have fine-tuned
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        model_state_dict = torch.load(output_model_file)
        model = OpenAIGPTLMHeadModel(config)
        model.load_state_dict(model_state_dict)
        model.to(device)

        model.eval()

        eval_ppl = 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, lm_labels = batch
            loss = model(input_ids, lm_labels=lm_labels)
            eval_ppl += math.exp(loss.item())
            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1
        eval_ppl = eval_ppl / nb_eval_steps
        train_loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {'eval_ppl': eval_ppl, 'train_loss': train_loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))