Exemple #1
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        type=str,
                        default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument('--train_dataset', type=str, default='')
    parser.add_argument('--eval_dataset', type=str, default='')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.9)
    parser.add_argument('--n_valid', type=int, default=374)

    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(
        args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(
        tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(
        args.model_name, num_special_tokens=len(special_tokens))
    model.to(device)

    # Load and encode the datasets
    if not args.train_dataset and not args.eval_dataset:
        roc_stories = cached_path(ROCSTORIES_URL)

    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        return list(tokenize_and_encode(o) for o in obj)

    logger.info("Encoding dataset...")
    train_dataset = load_rocstories_dataset(args.train_dataset)
    eval_dataset = load_rocstories_dataset(args.eval_dataset)
    datasets = (train_dataset, eval_dataset)
    encoded_datasets = tokenize_and_encode(datasets)

    # Compute the max input length for the Transformer
    max_length = model.config.n_positions // 2 - 2
    input_length = max(len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3  \
                           for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
    input_length = min(input_length, model.config.n_positions
                       )  # Max size of input for the pre-trained model

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length,
                                           max_length, *special_tokens_ids)
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[
        0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    num_train_optimization_steps = len(
        train_data) * args.num_train_epochs // args.train_batch_size
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=args.weight_decay,
                           t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_ids, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]
                loss.backward()
                optimizer.step()
                optimizer.zero_grad()
                tr_loss += loss.item()
                exp_average_loss = loss.item(
                ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item(
                )
                nb_tr_steps += 1
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

    # Save a trained model
    if args.do_train:
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        config = model.config
        torch.save(model_to_save.state_dict(), output_model_file)

        # Load a trained model that you have fine-tuned
        model_state_dict = torch.load(output_model_file)
        model = OpenAIGPTDoubleHeadsModel(config)
        model.load_state_dict(model_state_dict)
        model.to(device)

    if args.do_eval:
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, mc_token_ids, lm_labels, mc_labels = batch
            with torch.no_grad():
                _, mc_loss = model(input_ids, mc_token_ids, lm_labels,
                                   mc_labels)
                _, mc_logits = model(input_ids, mc_token_ids)

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        train_loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'train_loss': train_loss
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
Exemple #2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .csv files (or other data files) for the task."
    )
    parser.add_argument('--model_name',
                        type=str,
                        default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--answer_only",
        default=False,
        action='store_true',
        help="Whether to run with answers only (blank out question).")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument(
        "--load_model_from",
        default=None,
        type=str,
        help=
        "The saved model file to load before doing any training or eval (if both --do_train and --do_eval are specified, the saved model will be loaded, then trained, then the trained model will be evaluated)."
    )
    parser.add_argument(
        '--train_filename',
        type=str,
        default='train.csv',
        help="Filename to load train data from (relative to data_dir)")
    parser.add_argument(
        '--eval_filename',
        type=str,
        default='val.csv',
        help="File to load eval data from (relative to data_dir)")
    parser.add_argument(
        '--data_format',
        type=str,
        choices=['swag', 'codah'],
        default='swag',
        help=
        "Format of the train and eval files (original SWAG CSV format vs our TSV format)"
    )
    parser.add_argument(
        '--model_labels_save_filename',
        type=str,
        default='model_labels.json',
        help=
        "JSON file to save model outputs/labels to (relative to output_dir)")
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=32)
    parser.add_argument('--eval_batch_size', type=int, default=8)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.5)
    parser.add_argument('--n_valid', type=int, default=374)
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=8,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )

    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    if args.do_eval and (not args.do_train) and args.load_model_from is None:
        args.load_model_from = os.path.join(args.output_dir,
                                            'pytorch_model.bin')

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(
        args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(
        tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(
        args.model_name, num_special_tokens=len(special_tokens))

    config = model.config
    if args.load_model_from:
        model_state_dict = torch.load(args.load_model_from)
        model = OpenAIGPTDoubleHeadsModel(config)
        model.load_state_dict(model_state_dict)
    model.to(device)

    # Load and encode the datasets
    logger.info("Loading datasets...")
    datasets = []
    dataset_keys = dict()
    if args.do_train:
        train_dataset = read_swag_examples(os.path.join(
            args.data_dir, args.train_filename),
                                           is_training=True,
                                           answer_only=args.answer_only,
                                           data_format=args.data_format)
        train_dataset = [
            EncodedSwagExample(ex, tokenizer)
            for ex in tqdm(train_dataset, desc='Encoding train')
        ]
        dataset_keys['train'] = len(datasets)
        datasets.append(train_dataset)

    if args.do_eval:
        eval_dataset = read_swag_examples(os.path.join(args.data_dir,
                                                       args.eval_filename),
                                          is_training=True,
                                          answer_only=args.answer_only,
                                          data_format=args.data_format)
        eval_dataset = [
            EncodedSwagExample(ex, tokenizer)
            for ex in tqdm(eval_dataset, desc='Encoding eval')
        ]
        dataset_keys['eval'] = len(datasets)
        datasets.append(eval_dataset)

    # Compute the max input length for the Transformer
    max_length = model.config.n_positions // 2 - 2
    input_length = max(len(swagex.context_tokens[:max_length]) + len(swagex.start_ending_tokens[:max_length]) + max(len(ending[:max_length]) for ending in swagex.endings_tokens) + 3  \
                           for dataset in datasets for swagex in dataset)
    input_length = min(input_length, model.config.n_positions
                       )  # Max size of input for the pre-trained model
    print('---')
    print('Input length: {}\n'.format(input_length))
    print('---')

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(datasets, input_length, max_length,
                                           *special_tokens_ids)
    if args.do_train:
        train_tensor_dataset = tensor_datasets[dataset_keys['train']]
    if args.do_eval:
        eval_tensor_dataset = tensor_datasets[dataset_keys['eval']]

    # Prepare optimizer
    if args.do_train:
        train_data = TensorDataset(*train_tensor_dataset)
        train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        #num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
        num_train_optimization_steps = int(
            len(train_data) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        optimizer = OpenAIAdam(optimizer_grouped_parameters,
                               lr=args.learning_rate,
                               warmup=args.warmup_proportion,
                               max_grad_norm=args.max_grad_norm,
                               weight_decay=args.weight_decay,
                               t_total=num_train_optimization_steps)

        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_ids, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()

                tr_loss += loss.item()
                nb_tr_steps += 1
                exp_average_loss = loss.item(
                ) if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item(
                )
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(
                    exp_average_loss,
                    optimizer.get_lr()[0])

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()
                    optimizer.zero_grad()

    # Save a trained model
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    if args.do_train:
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        torch.save(model_to_save.state_dict(), output_model_file)

    if args.do_eval:
        eval_data = TensorDataset(*eval_tensor_dataset)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        # Load a trained model that you have fine-tuned
        if args.do_train:
            model_state_dict = torch.load(output_model_file)
            model = OpenAIGPTDoubleHeadsModel(config)
            model.load_state_dict(model_state_dict)
            model.to(device)
        model.eval()

        all_model_outputs = []
        data_index = 0

        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, mc_token_ids, lm_labels, mc_labels = batch
            with torch.no_grad():
                _, mc_loss = model(input_ids, mc_token_ids, lm_labels,
                                   mc_labels)
                _, mc_logits = model(input_ids, mc_token_ids)

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            for i in range(input_ids.size(0)):
                output_obj = dict()
                output_obj['logits'] = [float(x) for x in mc_logits[i]]
                output_obj['true_label'] = int(mc_labels[i])
                output_obj['model_label'] = int(np.argmax(mc_logits[i]))
                output_obj['swag_data'] = datasets[
                    dataset_keys['eval']][data_index].raw_example.to_dict()
                all_model_outputs.append(output_obj)
                data_index += 1

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        train_loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'train_loss': train_loss
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        with open(
                os.path.join(args.output_dir, args.model_labels_save_filename),
                'w') as f:
            json.dump(all_model_outputs, f)