Exemple #1
0
    def on_batch_end(self):
        super().on_batch_end()
        # log cls & box loss. I'm using a very dirty way to do it by accessing
        # protected attributes of loss class
        self.cls_loss_meter.update(
            utils.to_numpy(self.state.criterion._cls_loss))
        self.box_loss_meter.update(
            utils.to_numpy(self.state.criterion._box_loss))

        # skip creating coco res for train
        if self.state.is_train:
            return

        cls_out, box_out = self.state.output
        res = decode(cls_out, box_out, self.anchors, **self.decode_params)

        # rescale to image size. don't really need to clip after that
        res[..., :4] *= self.batch_ratios.view(-1, 1, 1).to(res)
        # xyxy -> xywh
        res[..., 2:4] = res[..., 2:4] - res[..., :2]

        for batch in range(res.size(0)):
            for one_res in res[batch]:
                if one_res[4].tolist(
                ) < 0.001:  # stop when below this threshold, scores in descending order
                    break
                coco_result = dict(
                    image_id=self.batch_img_ids[batch, 0].tolist(),
                    bbox=one_res[:4].tolist(),
                    score=one_res[4].tolist(),
                    category_id=int(one_res[5].tolist()),
                )
                self.all_results.append(coco_result)
Exemple #2
0
 def predict(self, x):
     """Run forward on given images and decode raw prediction into bboxes
     Returns: bboxes, scores, classes
     """
     class_outputs, box_outputs = self.forward(x)
     anchors = box_utils.generate_anchors_boxes(x.shape[-2:])[0]
     return box_utils.decode(class_outputs, box_outputs, anchors)
Exemple #3
0
    def predict(self, x):
        """
        Run forward on given images and decode raw prediction into bboxes
		Returns:
            torch.Tensor with bboxes, scores and classes. bboxes in `lrtb` format
            shape [BS, MAX_DETECTION_PER_IMAGE, 6]
		"""
        class_outputs, box_outputs = self.forward(x)
        anchors = box_utils.generate_anchors_boxes(x.shape[-2:])[0]
        return box_utils.decode(class_outputs, box_outputs, anchors)
Exemple #4
0
    def on_batch_end(self):
        if self.state.is_train:
            return

        cls_out, box_out = self.state.output
        res = decode(cls_out, box_out,
                     self.anchors)  #  TODO: return **self.decode_params

        # rescale to image size. don't really need to clip after that
        res[..., :4] *= self.batch_ratios.view(-1, 1, 1).to(res)
        # xyxy -> xywh
        res[..., 2:4] = res[..., 2:4] - res[..., :2]

        for batch in range(res.size(0)):
            for one_res in res[batch]:
                self.all_img_ids.append(self.batch_img_ids[batch, 0].tolist())
                coco_result = dict(
                    image_id=self.batch_img_ids[batch, 0].tolist(),
                    bbox=one_res[:4].tolist(),
                    score=one_res[4].tolist(),
                    category_id=int(one_res[5].tolist()),
                )
                self.all_results.append(coco_result)