Exemple #1
0
class SiamRPNpp_RF(GOT10kTracker):
    def __init__(self, rf_model_code, enable_rf=True):
        model_name = 'siamrpn_' + RF_type.format(rf_model_code)
        if not enable_rf:
            model_name = model_name.replace(RF_type.format(rf_model_code), '')
        super(SiamRPNpp_RF, self).__init__(name=model_name)
        self.enable_rf = enable_rf
        # create tracker
        snapshot_path = os.path.join(project_path_,
                                     'experiments/%s/model.pth' % siam_model_)
        config_path = os.path.join(project_path_,
                                   'experiments/%s/config.yaml' % siam_model_)
        cfg.merge_from_file(config_path)
        model = ModelBuilder()  # a sub-class of `torch.nn.Module`
        model = load_pretrain(model, snapshot_path).cuda().eval()
        self.tracker = build_tracker(
            model
        )  # tracker is a object consisting of NN and some post-processing

        # create refinement module
        if self.enable_rf:
            self.RF_module = RefineModule(refine_path.format(rf_model_code),
                                          selector_path,
                                          search_factor=sr,
                                          input_sz=input_sz)

    def init(self, image, box):
        image = np.array(image)
        self.im_H, self.im_W, _ = image.shape
        cx, cy, w, h = get_axis_aligned_bbox(np.array(box))
        gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
        self.tracker.init(
            cv2.cvtColor(image, cv2.COLOR_RGB2BGR),
            gt_bbox_)  # image is RGB, does siamrpn take BGR image?

        if self.enable_rf:
            self.RF_module.initialize(image, np.array(gt_bbox_))
        self.box = box

    def update(self, image):
        image = np.array(image)
        outputs = self.tracker.track(cv2.cvtColor(
            image,
            cv2.COLOR_RGB2BGR))  # image is RGB, does siamrpn take BGR image?
        pred_bbox = outputs['bbox']

        # refine tracking results
        if self.enable_rf:
            pred_bbox = self.RF_module.refine(image, np.array(pred_bbox))
            x1, y1, w, h = pred_bbox.tolist()

            x1, y1, x2, y2 = bbox_clip(
                x1, y1, x1 + w, y1 + h,
                (self.im_H, self.im_W))  # add boundary and min size limit
            w = x2 - x1
            h = y2 - y1
            pred_bbox = np.array([x1, y1, w, h])
            self.tracker.center_pos = np.array([x1 + w / 2, y1 + h / 2])
            self.tracker.size = np.array([w, h])
        return pred_bbox
Exemple #2
0
    def __init__(self, rf_model_code, enable_rf=True):
        _tracker_name, _tracker_param, model_name = self._get_setting()
        model_name = model_name.format(rf_model_code)
        if not enable_rf:
            model_name = model_name.replace(RF_type.format(rf_model_code), '')
        super(Pytracking_RF, self).__init__(name=model_name)
        self.enable_rf = enable_rf
        # create tracker
        tracker_info = Tracker(_tracker_name, _tracker_param, None)
        params = tracker_info.get_parameters()
        params.visualization = False
        params.debug = False
        params.visdom_info = {
            'use_visdom': False,
            'server': '127.0.0.1',
            'port': 8097
        }
        self.tracker = tracker_info.tracker_class(params)

        # create Refinement module
        if self.enable_rf:
            self.RF_module = RefineModule(refine_path.format(rf_model_code),
                                          selector_path,
                                          search_factor=sr,
                                          input_sz=input_sz)
Exemple #3
0
def get_ar(img, init_box, ar_path):
    """ set up Alpha-Refine """
    selector_path = 0
    sr = 2.0
    input_sz = int(128 * sr)  # 2.0 by default
    RF_module = RefineModule(ar_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    RF_module.initialize(img, np.array(init_box))
    return RF_module
Exemple #4
0
    def __init__(self, rf_model_code, enable_rf=True):
        model_name = 'RTMDNet' + '{}-{}'.format(RF_type.format(rf_model_code),
                                                selector_path)
        if not enable_rf:
            model_name = model_name.replace(RF_type.format(rf_model_code), '')
        super(RTMDNet_RF, self).__init__(name=model_name)
        self.enable_rf = enable_rf

        self.tracker = RT_MDNet()
        if self.enable_rf:
            self.RF_module = RefineModule(refine_path.format(rf_model_code),
                                          selector_path,
                                          search_factor=sr,
                                          input_sz=input_sz)
Exemple #5
0
class RTMDNet_RF(GOT10kTracker):
    def __init__(self, rf_model_code, enable_rf=True):
        model_name = 'RTMDNet' + '{}-{}'.format(RF_type.format(rf_model_code),
                                                selector_path)
        if not enable_rf:
            model_name = model_name.replace(RF_type.format(rf_model_code), '')
        super(RTMDNet_RF, self).__init__(name=model_name)
        self.enable_rf = enable_rf

        self.tracker = RT_MDNet()
        if self.enable_rf:
            self.RF_module = RefineModule(refine_path.format(rf_model_code),
                                          selector_path,
                                          search_factor=sr,
                                          input_sz=input_sz)

    def init(self, image, box):
        image = np.array(image)
        self.im_H, self.im_W, _ = image.shape
        cx, cy, w, h = get_axis_aligned_bbox(np.array(box))
        gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]

        # initialize tracker
        self.tracker.initialize_seq(image, np.array(gt_bbox_))
        # initilize refine module
        if self.enable_rf:
            self.RF_module.initialize(image, np.array(gt_bbox_))
        self.box = box

    def update(self, image):
        image = np.array(image)
        pred_bbox = self.tracker.track(image)

        if self.enable_rf:
            # refine tracking results
            pred_bbox = self.RF_module.refine(image, np.array(pred_bbox))
            pred_bbox = bbox_clip(
                pred_bbox, (self.im_H, self.im_W))  # boundary and size limit
            '''update state'''
            self.tracker.target_bbox = pred_bbox.copy()
        return pred_bbox
Exemple #6
0
    def __init__(self, rf_model_code, enable_rf=True):
        model_name = 'siamrpn_' + RF_type.format(rf_model_code)
        if not enable_rf:
            model_name = model_name.replace(RF_type.format(rf_model_code), '')
        super(SiamRPNpp_RF, self).__init__(name=model_name)
        self.enable_rf = enable_rf
        # create tracker
        snapshot_path = os.path.join(project_path_,
                                     'experiments/%s/model.pth' % siam_model_)
        config_path = os.path.join(project_path_,
                                   'experiments/%s/config.yaml' % siam_model_)
        cfg.merge_from_file(config_path)
        model = ModelBuilder()  # a sub-class of `torch.nn.Module`
        model = load_pretrain(model, snapshot_path).cuda().eval()
        self.tracker = build_tracker(
            model
        )  # tracker is a object consisting of NN and some post-processing

        # create refinement module
        if self.enable_rf:
            self.RF_module = RefineModule(refine_path.format(rf_model_code),
                                          selector_path,
                                          search_factor=sr,
                                          input_sz=input_sz)
Exemple #7
0
class Pytracking_RF(GOT10kTracker):
    def __init__(self, rf_model_code, enable_rf=True):
        _tracker_name, _tracker_param, model_name = self._get_setting()
        model_name = model_name.format(rf_model_code)
        if not enable_rf:
            model_name = model_name.replace(RF_type.format(rf_model_code), '')
        super(Pytracking_RF, self).__init__(name=model_name)
        self.enable_rf = enable_rf
        # create tracker
        tracker_info = Tracker(_tracker_name, _tracker_param, None)
        params = tracker_info.get_parameters()
        params.visualization = False
        params.debug = False
        params.visdom_info = {
            'use_visdom': False,
            'server': '127.0.0.1',
            'port': 8097
        }
        self.tracker = tracker_info.tracker_class(params)

        # create Refinement module
        if self.enable_rf:
            self.RF_module = RefineModule(refine_path.format(rf_model_code),
                                          selector_path,
                                          search_factor=sr,
                                          input_sz=input_sz)

    def _get_setting(self):
        raise NotImplementedError

    def init(self, image, box):
        image = np.array(image)
        self.im_H, self.im_W, _ = image.shape
        cx, cy, w, h = get_axis_aligned_bbox(np.array(box))
        gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]

        # Initialize base tracker
        gt_bbox_np = np.array(gt_bbox_)
        gt_bbox_torch = torch.from_numpy(gt_bbox_np.astype(np.float32))
        init_info = {}
        init_info['init_bbox'] = gt_bbox_torch
        _ = self.tracker.initialize(image, init_info)

        # initilize refinement module for specific video
        if self.enable_rf:
            self.RF_module.initialize(image, np.array(gt_bbox_))
        self.box = box

    def update(self, image):
        image = np.array(image)

        # track
        outputs = self.tracker.track(image)
        pred_bbox = outputs['target_bbox']

        # refine tracking results
        if self.enable_rf:
            pred_bbox = self.RF_module.refine(image, np.array(pred_bbox))

            # post processing
            x1, y1, w, h = pred_bbox.tolist()
            x1, y1, x2, y2 = bbox_clip(
                x1, y1, x1 + w, y1 + h,
                (self.im_H, self.im_W))  # add boundary and min size limit
            w = x2 - x1
            h = y2 - y1
            new_pos = torch.from_numpy(
                np.array([y1 + h / 2, x1 + w / 2]).astype(np.float32))
            new_target_sz = torch.from_numpy(
                np.array([h, w]).astype(np.float32))
            new_scale = torch.sqrt(new_target_sz.prod() /
                                   self.tracker.base_target_sz.prod())

            # update tracker's state with refined result
            self.tracker.pos = new_pos.clone()
            self.tracker.target_sz = new_target_sz
            self.tracker.target_scale = new_scale
        return pred_bbox
Exemple #8
0
def main():
    # load config
    dataset_root = '/media/zxy/Samsung_T5/Data/DataSets/LaSOT/LaSOT_test'

    # create tracker
    '''Pytracking-RF tracker'''
    tracker_info = Tracker(args.tracker_name, args.tracker_param, None)
    params = tracker_info.get_parameters()
    params.visualization = args.vis
    params.debug = args.debug
    params.visdom_info = {
        'use_visdom': False,
        'server': '127.0.0.1',
        'port': 8097
    }
    tracker = tracker_info.tracker_class(params)
    '''Refinement module'''
    # refine_path = "/home/zxy/Desktop/AlphaRefine/experiments/SEx_beta/SEcm_r34_15sr_fcn/SEcmnet_ep0040-a.pth.tar"  # RF_CrsM_R34SR15FCN_a

    # refine_path = "/home/zxy/Desktop/AlphaRefine/experiments/SEx_beta/SEcm_r34/SEcmnet_ep0040-a.pth.tar"  # dimp_dimp50RF_CrsM_R34SR20FCN_a-0_1
    # refine_path = "/home/zxy/Desktop/AlphaRefine/experiments/SEx_beta/SEcm_r34/SEcmnet_ep0040-b.pth.tar"
    # refine_path = "/home/zxy/Desktop/AlphaRefine/experiments/SEx_beta/SEcm_r34/SEcmnet_ep0040-c.pth.tar"
    # refine_path = "/home/zxy/Desktop/AlphaRefine/experiments/SEx_beta/SEcm_r34/SEcmnet_ep0040-d.pth.tar"
    # refine_path = "/home/zxy/Desktop/AlphaRefine/experiments/SEx_beta/SEcm_r34/SEcmnet_ep0040-e.pth.tar"

    refine_path = "/home/zxy/Desktop/AlphaRefine/experiments/SEbcm/SEbcm-8gpu/SEbcmnet_ep0040.pth.tar"  # RF_CrsM_ARv1_d

    selector_path = 1
    branches = ['corner', 'mask'][0:1]
    sr = 2.0
    input_sz = int(128 * sr)  # 2.0 by default

    RF_module = RefineModule(refine_path,
                             selector_path,
                             branches=branches,
                             search_factor=sr,
                             input_sz=input_sz)

    RF_type = 'RF_CrsM_R34SR20_e'
    # RF_type = 'RF_CrsM_ARv1'

    model_name = args.tracker_name + '_' + args.tracker_param + '{}-{}'.format(
        RF_type, selector_path) + '_%d' % (args.run_id)

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root,
                                            load_img=False)

    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        total_lost = 0

        # restart tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            '''对refinement module计时'''
            toc_refine = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [
                        gt_bbox[0], gt_bbox[1], gt_bbox[0],
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1,
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1, gt_bbox[1]
                    ]
                tic = cv2.getTickCount()
                '''get RGB format image'''
                img_RGB = img[:, :, ::-1].copy()  # BGR --> RGB
                if idx == frame_counter:
                    H, W, _ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                    '''Initialize'''
                    gt_bbox_np = np.array(gt_bbox_)
                    gt_bbox_torch = torch.from_numpy(
                        gt_bbox_np.astype(np.float32))
                    init_info = {}
                    init_info['init_bbox'] = gt_bbox_torch
                    _ = tracker.initialize(img_RGB, init_info)
                    '''##### initilize refinement module for specific video'''
                    RF_module.initialize(img_RGB, np.array(gt_bbox_))

                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)
                elif idx > frame_counter:
                    '''Track'''
                    outputs = tracker.track(img_RGB)
                    pred_bbox = outputs['target_bbox']
                    '''##### refine tracking results #####'''
                    result_dict = RF_module.refine(img_RGB,
                                                   np.array(pred_bbox))
                    bbox_report = result_dict['bbox_report']
                    bbox_state = result_dict['bbox_state']
                    '''report result and update state'''
                    pred_bbox = bbox_report
                    x1, y1, w, h = bbox_state.tolist()
                    '''add boundary and min size limit'''
                    x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                    w = x2 - x1
                    h = y2 - y1
                    new_pos = torch.from_numpy(
                        np.array([y1 + h / 2, x1 + w / 2]).astype(np.float32))
                    new_target_sz = torch.from_numpy(
                        np.array([h, w]).astype(np.float32))
                    new_scale = torch.sqrt(new_target_sz.prod() /
                                           tracker.base_target_sz.prod())
                    ##### update
                    tracker.pos = new_pos.clone()
                    tracker.target_sz = new_target_sz
                    tracker.target_scale = new_scale

                    overlap = vot_overlap(pred_bbox, gt_bbox,
                                          (img.shape[1], img.shape[0]))
                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5  # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(
                        img, [np.array(gt_bbox, np.int).reshape(
                            (-1, 1, 2))], True, (0, 255, 0), 3)
                    if len(pred_bbox) == 8:
                        cv2.polylines(
                            img,
                            [np.array(pred_bbox, np.int).reshape(
                                (-1, 1, 2))], True, (0, 255, 255), 3)
                    else:
                        bbox = list(map(int, pred_bbox))
                        cv2.rectangle(img, (bbox[0], bbox[1]),
                                      (bbox[0] + bbox[2], bbox[1] + bbox[3]),
                                      (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            video_path = os.path.join(save_dir, args.dataset, model_name,
                                      'baseline', video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path,
                                       '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i)
                                          for i in x]) + '\n')
            print(
                '({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'
                .format(v_idx + 1, video.name, toc, idx / toc, lost_number))
            total_lost += lost_number
        print("{:s} total lost: {:d}".format(model_name, total_lost))

    else:
        # OPE tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            toc = 0
            pred_bboxes = []
            scores = []
            track_times = []
            for idx, (img, gt_bbox) in enumerate(video):
                '''get RGB format image'''
                img_RGB = img[:, :, ::-1].copy()  # BGR --> RGB
                tic = cv2.getTickCount()
                if idx == 0:
                    H, W, _ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                    '''Initialize'''
                    gt_bbox_np = np.array(gt_bbox_)
                    gt_bbox_torch = torch.from_numpy(
                        gt_bbox_np.astype(np.float32))
                    init_info = {}
                    init_info['init_bbox'] = gt_bbox_torch
                    _ = tracker.initialize(img_RGB, init_info)
                    '''##### initilize refinement module for specific video'''
                    RF_module.initialize(img_RGB, np.array(gt_bbox_))

                    pred_bbox = gt_bbox_
                    scores.append(None)
                    if 'VOT2018-LT' == args.dataset:
                        pred_bboxes.append([1])
                    else:
                        pred_bboxes.append(pred_bbox)
                else:
                    '''Track'''
                    outputs = tracker.track(img_RGB)
                    pred_bbox = outputs['target_bbox']
                    '''##### refine tracking results #####'''
                    pred_bbox = RF_module.refine(
                        cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                        np.array(pred_bbox))
                    x1, y1, w, h = pred_bbox.tolist()
                    '''add boundary and min size limit'''
                    x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                    w = x2 - x1
                    h = y2 - y1
                    new_pos = torch.from_numpy(
                        np.array([y1 + h / 2, x1 + w / 2]).astype(np.float32))
                    new_target_sz = torch.from_numpy(
                        np.array([h, w]).astype(np.float32))
                    new_scale = torch.sqrt(new_target_sz.prod() /
                                           tracker.base_target_sz.prod())
                    ##### update
                    tracker.pos = new_pos.clone()
                    tracker.target_sz = new_target_sz
                    tracker.target_scale = new_scale

                    pred_bboxes.append(pred_bbox)
                    # scores.append(outputs['best_score'])
                toc += cv2.getTickCount() - tic
                track_times.append(
                    (cv2.getTickCount() - tic) / cv2.getTickFrequency())
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > 0:
                    gt_bbox = list(map(int, gt_bbox))
                    pred_bbox = list(map(int, pred_bbox))
                    cv2.rectangle(
                        img, (gt_bbox[0], gt_bbox[1]),
                        (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                        (0, 255, 0), 3)
                    cv2.rectangle(img, (pred_bbox[0], pred_bbox[1]),
                                  (pred_bbox[0] + pred_bbox[2],
                                   pred_bbox[1] + pred_bbox[3]), (0, 255, 255),
                                  3)
                    cv2.putText(img, str(idx), (40, 40),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            if 'VOT2018-LT' == args.dataset:
                video_path = os.path.join(save_dir, args.dataset, model_name,
                                          'longterm', video.name)
                if not os.path.isdir(video_path):
                    os.makedirs(video_path)
                result_path = os.path.join(video_path,
                                           '{}_001.txt'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in pred_bboxes:
                        f.write(','.join([str(i) for i in x]) + '\n')
                result_path = os.path.join(
                    video_path, '{}_001_confidence.value'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in scores:
                        f.write('\n') if x is None else f.write(
                            "{:.6f}\n".format(x))
                result_path = os.path.join(video_path,
                                           '{}_time.txt'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in track_times:
                        f.write("{:.6f}\n".format(x))
            elif 'GOT-10k' == args.dataset:
                video_path = os.path.join(save_dir, args.dataset, model_name,
                                          video.name)
                if not os.path.isdir(video_path):
                    os.makedirs(video_path)
                result_path = os.path.join(video_path,
                                           '{}_001.txt'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in pred_bboxes:
                        f.write(','.join([str(i) for i in x]) + '\n')
                result_path = os.path.join(video_path,
                                           '{}_time.txt'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in track_times:
                        f.write("{:.6f}\n".format(x))
            else:
                model_path = os.path.join(save_dir, args.dataset, model_name)
                if not os.path.isdir(model_path):
                    os.makedirs(model_path)
                result_path = os.path.join(model_path,
                                           '{}.txt'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in pred_bboxes:
                        f.write(','.join([str(i) for i in x]) + '\n')
            print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.
                  format(v_idx + 1, video.name, toc, idx / toc))
Exemple #9
0
def main():
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)

    # refine_method = args.refine_method
    model_name = 'siamrpn_' + RF_type + '_m2b_{}'.format(args.thres)

    snapshot_path = os.path.join(
        project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(
        project_path_, 'experiments/%s/config.yaml' % args.tracker_name)

    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a sub-class of `torch.nn.Module`
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(
        model)  # tracker is a object consisting of NN and some post-processing

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    # OPE tracking
    for v_idx, video in enumerate(dataset):
        if os.path.exists(
                os.path.join(save_dir, args.dataset, model_name,
                             '{}.txt'.format(video.name))):
            continue
        if args.video != '':
            # test one special video
            if video.name != args.video:
                continue
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                tracker.init(img, gt_bbox_)
                '''##### initilize refinement module for specific video'''
                RF_module.initialize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                                     np.array(gt_bbox_))
                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)

            else:
                outputs = tracker.track(img)
                pred_bbox = outputs['bbox']
                '''##### refine tracking results #####'''
                mask_pred = RF_module.get_mask(
                    cv2.cvtColor(img, cv2.COLOR_BGR2RGB), np.array(pred_bbox))
                pred_bbox = mask2bbox(mask_pred,
                                      pred_bbox,
                                      MASK_THRESHOLD=args.thres)
                x1, y1, w, h = pred_bbox.tolist()
                '''add boundary and min size limit'''
                x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                w = x2 - x1
                h = y2 - y1

                pred_bbox = np.array([x1, y1, w, h])
                tracker.center_pos = np.array([x1 + w / 2, y1 + h / 2])
                tracker.size = np.array([w, h])

                pred_bboxes.append(pred_bbox)
                scores.append(outputs['best_score'])
            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                gt_bbox = list(map(int, gt_bbox))
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (gt_bbox[0], gt_bbox[1]),
                    (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                    (0, 255, 0), 3)
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(video.name, img)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()

        # save results
        model_path = os.path.join(save_dir, args.dataset,
                                  model_name + '_' + str(selector_path))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(video.name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, video.name, toc, idx / toc))
Exemple #10
0
def main(model_code):
    RF_module = RefineModule(refine_path.format(model_code),
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = 'AR_' + '{}'.format(
        RF_type.format(model_code)) + '_iter_%d' % (n_iter)

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        # restart tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [
                        gt_bbox[0], gt_bbox[1], gt_bbox[0],
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1,
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1, gt_bbox[1]
                    ]
                tic = cv2.getTickCount()
                if idx == frame_counter:
                    H, W, _ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                    '''##### initilize refinement module for specific video'''
                    RF_module.initialize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                                         np.array(gt_bbox_))
                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)

                elif idx > frame_counter:
                    '''##### refine tracking results #####'''
                    for _ in range(n_iter):
                        pred_bbox = RF_module.refine(
                            cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                            np.array(pred_bbox))
                        x1, y1, w, h = pred_bbox.tolist()
                        '''add boundary and min size limit'''
                        x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h,
                                                   (H, W))
                        w = x2 - x1
                        h = y2 - y1
                    pred_bbox = np.array([x1, y1, w, h])
                    overlap = vot_overlap(pred_bbox, gt_bbox,
                                          (img.shape[1], img.shape[0]))

                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5  # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(
                        img, [np.array(gt_bbox, np.int).reshape(
                            (-1, 1, 2))], True, (0, 255, 0), 3)

                    bbox = list(map(int, pred_bbox))
                    cv2.rectangle(img, (bbox[0], bbox[1]),
                                  (bbox[0] + bbox[2], bbox[1] + bbox[3]),
                                  (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()

            # save results
            video_path = os.path.join(save_dir, args.dataset, model_name,
                                      'baseline', video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path,
                                       '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i)
                                          for i in x]) + '\n')
            print(
                '({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'
                .format(v_idx + 1, video.name, toc, idx / toc, lost_number))
Exemple #11
0
def main():
    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)
    '''##### build a Refinement module #####'''
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = 'RTMDNet' + '{}-{}'.format(RF_type, selector_path)

    # OPE tracking
    for v_idx, video in enumerate(dataset):
        if os.path.exists(
                os.path.join(save_dir, args.dataset, model_name,
                             '{}.txt'.format(video.name))):
            continue
        if args.video != '':
            # test one special video
            if video.name != args.video:
                continue
        '''build tracker'''
        tracker = RT_MDNet()
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB format
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                '''initialize tracker'''
                tracker.initialize_seq(img_RGB, np.array(gt_bbox_))
                '''initilize refine module for specific video'''
                RF_module.initialize(img_RGB, np.array(gt_bbox_))
                pred_bbox = gt_bbox_
                scores.append(None)
                if 'VOT2018-LT' == args.dataset:
                    pred_bboxes.append([1])
                else:
                    pred_bboxes.append(pred_bbox)
            else:
                ori_bbox = tracker.track(img_RGB)
                '''##### refine tracking results #####'''
                pred_bbox = RF_module.refine(img_RGB, np.array(ori_bbox))
                '''boundary and size limit'''
                pred_bbox = bbox_clip(pred_bbox, (H, W))
                '''update state'''
                tracker.target_bbox = pred_bbox.copy()
                pred_bboxes.append(pred_bbox)
                # scores.append(outputs['best_score'])
            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                gt_bbox = list(map(int, gt_bbox))
                ori_bbox = list(map(int, ori_bbox))
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (gt_bbox[0], gt_bbox[1]),
                    (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                    (0, 0, 255), 3)
                cv2.rectangle(
                    img, (ori_bbox[0], ori_bbox[1]),
                    (ori_bbox[0] + ori_bbox[2], ori_bbox[1] + ori_bbox[3]),
                    (255, 0, 0), 3)
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 0), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(video.name, img)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()

        # save results
        model_path = os.path.join(save_dir, args.dataset, model_name)
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(video.name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, video.name, toc, idx / toc))
Exemple #12
0
def main():
    # create tracker
    tracker_info = Tracker(args.tracker_name, args.tracker_param, None)
    params = tracker_info.get_parameters()
    params.visualization = args.vis
    params.debug = args.debug
    params.visdom_info = {
        'use_visdom': False,
        'server': '127.0.0.1',
        'port': 8097
    }
    tracker = tracker_info.tracker_class(params)
    '''Refinement module'''
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = args.tracker_name + '_' + args.tracker_param + '{}-{}'.format(
        RF_type, selector_path) + '_%d' % (args.run_id)

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    # OPE tracking
    for v_idx, video in enumerate(dataset):
        if os.path.exists(
                os.path.join(save_dir, args.dataset, model_name,
                             '{}.txt'.format(video.name))):
            continue
        if args.video != '':
            # test one special video
            if video.name != args.video:
                continue
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            '''get RGB format image'''
            img_RGB = img[:, :, ::-1].copy()  # BGR --> RGB
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                '''Initialize'''
                gt_bbox_np = np.array(gt_bbox_)
                gt_bbox_torch = torch.from_numpy(gt_bbox_np.astype(np.float32))
                init_info = {}
                init_info['init_bbox'] = gt_bbox_torch
                _ = tracker.initialize(img_RGB, init_info)
                '''##### initilize refinement module for specific video'''
                RF_module.initialize(img_RGB, np.array(gt_bbox_))

                pred_bbox = gt_bbox_
                scores.append(None)
                if 'VOT2018-LT' == args.dataset:
                    pred_bboxes.append([1])
                else:
                    pred_bboxes.append(pred_bbox)
            else:
                '''Track'''
                outputs = tracker.track(img_RGB)
                pred_bbox = outputs['target_bbox']
                '''##### refine tracking results #####'''
                pred_bbox = RF_module.refine(
                    cv2.cvtColor(img, cv2.COLOR_BGR2RGB), np.array(pred_bbox))
                x1, y1, w, h = pred_bbox.tolist()
                '''add boundary and min size limit'''
                x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                w = x2 - x1
                h = y2 - y1
                new_pos = torch.from_numpy(
                    np.array([y1 + h / 2, x1 + w / 2]).astype(np.float32))
                new_target_sz = torch.from_numpy(
                    np.array([h, w]).astype(np.float32))
                new_scale = torch.sqrt(new_target_sz.prod() /
                                       tracker.base_target_sz.prod())
                ##### update
                tracker.pos = new_pos.clone()
                tracker.target_sz = new_target_sz
                tracker.target_scale = new_scale

                pred_bboxes.append(pred_bbox)
            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                gt_bbox = list(map(int, gt_bbox))
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (gt_bbox[0], gt_bbox[1]),
                    (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                    (0, 255, 0), 3)
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(video.name, img)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()

        # save results
        model_path = os.path.join(save_dir, args.dataset, model_name)
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(video.name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, video.name, toc, idx / toc))
Exemple #13
0
def main():
    # create tracker
    tracker_info = Tracker(args.tracker_name, args.tracker_param, None)
    params = tracker_info.get_parameters()
    params.visualization = args.vis
    params.debug = args.debug
    params.visdom_info = {
        'use_visdom': False,
        'server': '127.0.0.1',
        'port': 8097
    }
    tracker = tracker_info.tracker_class(params)
    '''Refinement module'''
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = args.tracker_name + '_' + args.tracker_param + '{}-{}'.format(
        RF_type, selector_path) + '_%d' % (args.run_id)

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    # OPE tracking
    for v_idx, video in enumerate(dataset):
        color = np.array(COLORS[random.randint(0,
                                               len(COLORS) - 1)])[None,
                                                                  None, ::-1]
        vis_result = os.path.join(
            '/home/zxy/Desktop/AlphaRefine/CVPR21/material/quality_analysis/mask_vis',
            '{}'.format(video.name))

        if args.video != '':
            # test one special video
            if video.name != args.video:
                continue
            else:
                print()

        if not os.path.exists(vis_result):
            os.makedirs(vis_result)

        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            '''get RGB format image'''
            img_RGB = img[:, :, ::-1].copy()  # BGR --> RGB
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                '''Initialize'''
                gt_bbox_np = np.array(gt_bbox_)
                gt_bbox_torch = torch.from_numpy(gt_bbox_np.astype(np.float32))
                init_info = {}
                init_info['init_bbox'] = gt_bbox_torch
                _ = tracker.initialize(img_RGB, init_info)
                '''##### initilize refinement module for specific video'''
                RF_module.initialize(img_RGB, np.array(gt_bbox_))

                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)

            else:
                '''Track'''
                outputs = tracker.track(img_RGB)
                pred_bbox = outputs['target_bbox']
                '''##### refine tracking results #####'''
                pred_bbox = RF_module.refine(
                    cv2.cvtColor(img, cv2.COLOR_BGR2RGB), np.array(pred_bbox))

                x1, y1, w, h = pred_bbox.tolist()
                '''add boundary and min size limit'''
                x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                w = x2 - x1
                h = y2 - y1
                new_pos = torch.from_numpy(
                    np.array([y1 + h / 2, x1 + w / 2]).astype(np.float32))
                new_target_sz = torch.from_numpy(
                    np.array([h, w]).astype(np.float32))
                new_scale = torch.sqrt(new_target_sz.prod() /
                                       tracker.base_target_sz.prod())
                ##### update
                tracker.pos = new_pos.clone()
                tracker.target_sz = new_target_sz
                tracker.target_scale = new_scale

                mask_pred = RF_module.get_mask(
                    cv2.cvtColor(img, cv2.COLOR_BGR2RGB), np.array(pred_bbox))
                from external.pysot.toolkit.visualization import draw_mask
                draw_mask(img,
                          mask_pred,
                          idx=idx,
                          show=True,
                          save_dir='dimpsuper_armask_crocodile-3')

                pred_bboxes.append(pred_bbox)
                # scores.append(outputs['best_score'])
            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                im4show = img
                mask_pred = np.uint8(mask_pred > 0.5)[:, :, None]
                contours, _ = cv2.findContours(mask_pred.squeeze(),
                                               cv2.RETR_LIST,
                                               cv2.CHAIN_APPROX_SIMPLE)
                im4show = im4show * (1 - mask_pred) + np.uint8(
                    im4show * mask_pred /
                    2) + mask_pred * np.uint8(color) * 128
                pred_bbox = list(map(int, pred_bbox))
                # gt_bbox = list(map(int, gt_bbox))
                # cv2.rectangle(im4show, (gt_bbox[0], gt_bbox[1]),
                #               (gt_bbox[0]+gt_bbox[2], gt_bbox[1]+gt_bbox[3]), (0, 255, 0), 3)

                # cv2.rectangle(im4show, (pred_bbox[0], pred_bbox[1]),
                #               (pred_bbox[0]+pred_bbox[2], pred_bbox[1]+pred_bbox[3]), color[::-1].squeeze().tolist(), 3)

                cv2.drawContours(im4show, contours, -1, color[::-1].squeeze(),
                                 2)
                cv2.putText(im4show, str(idx), (40, 40),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                # cv2.imshow(video.name, im4show)
                cv2.imwrite(os.path.join(vis_result, '{:06}.jpg'.format(idx)),
                            im4show)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()
Exemple #14
0
def main():
    # create dataset
    dataset_root = dataset_root_
    frames_dir = os.path.join(dataset_root, 'frames')
    seq_list = sorted(os.listdir(frames_dir))
    '''##### build a Refinement module #####'''
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = 'RTMDNet' + '{}-{}'.format(RF_type, selector_path)

    # OPE tracking
    for v_idx, seq_name in enumerate(seq_list):
        if args.video != '':
            # test one special video
            if seq_name != args.video:
                continue
        '''build tracker'''
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        tracker = RT_MDNet()
        seq_frame_dir = os.path.join(frames_dir, seq_name)
        num_frames = len(os.listdir(seq_frame_dir))
        gt_file = os.path.join(dataset_root, 'anno', '%s.txt' % seq_name)
        gt_bbox = np.loadtxt(gt_file, dtype=np.float32,
                             delimiter=',').squeeze()
        for idx in range(num_frames):
            frame_path = os.path.join(seq_frame_dir, '%d.jpg' % idx)
            img = cv2.imread(frame_path)
            '''get RGB format image'''
            img_RGB = img[:, :, ::-1].copy()  # BGR --> RGB
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                '''initialize tracker'''
                tracker.initialize_seq(img_RGB, np.array(gt_bbox_))
                '''initilize refine module for specific video'''
                RF_module.initialize(img_RGB, np.array(gt_bbox_))
                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)

            else:
                ori_bbox = tracker.track(img_RGB)
                '''##### refine tracking results #####'''
                pred_bbox = RF_module.refine(img_RGB, np.array(ori_bbox))
                '''boundary and size limit'''
                pred_bbox = bbox_clip(pred_bbox, (H, W))
                '''update state'''
                tracker.target_bbox = pred_bbox.copy()

                pred_bboxes.append(pred_bbox)

            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(seq_name, img)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()

        # save results
        model_path = os.path.join(save_dir, 'trackingnet', model_name)
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(seq_name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, seq_name, toc, idx / toc))
Exemple #15
0
def main(model_code):
    # create tracker
    tracker_info = Tracker(args.tracker_name, args.tracker_param, None)
    params = tracker_info.get_parameters()
    params.visualization = args.vis
    params.debug = args.debug
    params.visdom_info = {'use_visdom': False, 'server': '127.0.0.1', 'port': 8097}
    tracker = tracker_info.tracker_class(params)

    RF_module = RefineModule(refine_path.format(model_code), selector_path, search_factor=sr, input_sz=input_sz)
    model_name = args.tracker_name + '_' + args.tracker_param +\
                 '{}-{}'.format(RF_type.format(model_code), selector_path) + '_%d'%(args.run_id)

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        total_lost = 0

        # restart tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            '''对refinement module计时'''
            toc_refine = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [gt_bbox[0], gt_bbox[1],
                       gt_bbox[0], gt_bbox[1]+gt_bbox[3]-1,
                       gt_bbox[0]+gt_bbox[2]-1, gt_bbox[1]+gt_bbox[3]-1,
                       gt_bbox[0]+gt_bbox[2]-1, gt_bbox[1]]
                tic = cv2.getTickCount()
                '''get RGB format image'''
                img_RGB = img[:, :, ::-1].copy()  # BGR --> RGB
                if idx == frame_counter:
                    H,W,_ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx-(w-1)/2, cy-(h-1)/2, w, h]
                    '''Initialize'''
                    gt_bbox_np = np.array(gt_bbox_)
                    gt_bbox_torch = torch.from_numpy(gt_bbox_np.astype(np.float32))
                    init_info = {}
                    init_info['init_bbox'] = gt_bbox_torch
                    _ = tracker.initialize(img_RGB, init_info)
                    '''##### initilize refinement module for specific video'''
                    RF_module.initialize(img_RGB, np.array(gt_bbox_))

                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)
                elif idx > frame_counter:
                    '''Track'''
                    outputs = tracker.track(img_RGB)
                    pred_bbox = outputs['target_bbox']
                    '''##### refine tracking results #####'''
                    pred_bbox = RF_module.refine(img_RGB, np.array(pred_bbox))
                    '''report result and update state'''
                    x1, y1, w, h = pred_bbox.tolist()
                    '''add boundary and min size limit'''
                    x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                    w = x2 - x1
                    h = y2 - y1
                    new_pos = torch.from_numpy(np.array([y1 + h / 2, x1 + w / 2]).astype(np.float32))
                    new_target_sz = torch.from_numpy(np.array([h, w]).astype(np.float32))
                    new_scale = torch.sqrt(new_target_sz.prod() / tracker.base_target_sz.prod())
                    ##### update
                    tracker.pos = new_pos.clone()
                    tracker.target_sz = new_target_sz
                    tracker.target_scale = new_scale

                    overlap = vot_overlap(pred_bbox, gt_bbox, (img.shape[1], img.shape[0]))
                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5 # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(img, [np.array(gt_bbox, np.int).reshape((-1, 1, 2))],
                            True, (0, 255, 0), 3)
                    if len(pred_bbox) == 8:
                        cv2.polylines(img, [np.array(pred_bbox, np.int).reshape((-1, 1, 2))],
                                      True, (0, 255, 255), 3)
                    else:
                        bbox = list(map(int, pred_bbox))
                        cv2.rectangle(img, (bbox[0], bbox[1]),
                                      (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            video_path = os.path.join(save_dir, args.dataset, model_name, 'baseline', video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path, '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i) for i in x])+'\n')
            print('({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
                    v_idx+1, video.name, toc, idx / toc, lost_number))
            total_lost += lost_number
        print("{:s} total lost: {:d}".format(model_name, total_lost))
Exemple #16
0
def main():
    # refine_method = args.refine_method
    n_iter = 2  # number of the the refine iterations
    model_name = 'RF_' + RF_type + 'iter-{}'.format(n_iter)
    dataset_root = dataset_root_

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root,
                                            load_img=False)

    # create refine module
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)

    # OPE tracking
    for v_idx, video in enumerate(dataset):
        if args.video != '':
            # test one special video
            if video.name != args.video:
                continue
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                # initialize refinement module for specific video
                RF_module.initialize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                                     np.array(gt_bbox_))
                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)

            else:
                # refine tracking results
                for i in range(n_iter):
                    pred_bbox = RF_module.refine(
                        cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                        np.array(pred_bbox))
                    x1, y1, w, h = pred_bbox.tolist()
                    '''add boundary and min size limit'''
                    x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                    w = x2 - x1
                    h = y2 - y1
                    pred_bbox = np.array([x1, y1, w, h])
                pred_bboxes.append(pred_bbox)
                scores.append(None)
            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())

            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                gt_bbox = list(map(int, gt_bbox))
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (gt_bbox[0], gt_bbox[1]),
                    (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                    (0, 255, 0), 3)
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(video.name, img)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()

        # save results
        model_path = os.path.join(save_dir, args.dataset,
                                  model_name + '_' + str(selector_path))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(video.name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, video.name, toc, idx / toc))
Exemple #17
0
def main():
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = 'siamrpn_' + RF_type
    print(model_name)

    dataset_root = dataset_root_

    snapshot_path = os.path.join(
        project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(
        project_path_, 'experiments/%s/config.yaml' % args.tracker_name)

    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a model is a Neural Network (`torch.nn.Module`)
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(
        model
    )  # tracker is a object consisting of a NN and some post-processing

    # create dataset
    frames_dir = os.path.join(dataset_root, 'frames')
    seq_list = sorted(os.listdir(frames_dir))

    # OPE tracking
    for v_idx, seq_name in enumerate(seq_list):
        if args.video != '':
            # test one special video
            if seq_name != args.video:
                continue
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        seq_frame_dir = os.path.join(frames_dir, seq_name)
        num_frames = len(os.listdir(seq_frame_dir))
        gt_file = os.path.join(dataset_root, 'anno', '%s.txt' % seq_name)
        gt_bbox = np.loadtxt(gt_file, dtype=np.float32,
                             delimiter=',').squeeze()
        for idx in range(num_frames):
            frame_path = os.path.join(seq_frame_dir, '%d.jpg' % idx)
            img = cv2.imread(frame_path)
            tic = cv2.getTickCount()
            if idx == 0:
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                H, W, _ = img.shape
                '''Initialize'''
                tracker.init(img, gt_bbox_)
                '''##### initilize refinement module for specific video'''
                RF_module.initialize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                                     np.array(gt_bbox_))
                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)

            else:
                '''Track'''
                outputs = tracker.track(img)
                pred_bbox = outputs['bbox']
                '''##### refine tracking results #####'''
                pred_bbox = RF_module.refine(
                    cv2.cvtColor(img, cv2.COLOR_BGR2RGB), np.array(pred_bbox))
                x1, y1, w, h = pred_bbox.tolist()
                '''add boundary and min size limit'''
                x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                w = x2 - x1
                h = y2 - y1
                pred_bbox = np.array([x1, y1, w, h])
                tracker.center_pos = np.array([x1 + w / 2, y1 + h / 2])
                tracker.size = np.array([w, h])
                pred_bboxes.append(pred_bbox)

            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(seq_name, img)
                cv2.waitKey(1)

        toc /= cv2.getTickFrequency()
        # save results
        model_path = os.path.join(save_dir, 'trackingnet', model_name)
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(seq_name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, seq_name, toc, idx / toc))