def test_constructor_from_command_list_Trajectory(self):
        '''mutable Trajectory'''
        # use `load` method rather `iterload`
        traj = pt.load("data/tz2.ortho.nc", "data/tz2.ortho.parm7")

        # make sure no space-sensitivity
        # make the code (commands) ugly is my intention.
        commands = [
            'autoimage ',
            'autoimage',
            'rmsd @CA',
            'distance :3 :7',
            'distance     :3 :7',
            'vector :2 :3',
            '  distance :3 :7',
            'rms @C,N,O',
        ]

        dslist = CpptrajDatasetList()
        actlist = ActionList(commands, traj.top, dslist=dslist)

        for frame in traj:
            actlist.compute(frame)

        aa_eq(pt.rmsd(traj, mask='@CA'), dslist[0])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[1])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[2])
        # do not need to perform rmsfit again.
        aa_eq(pt.vector.vector_mask(traj, ':2 :3'), dslist[3].values)
        aa_eq(pt.distance(traj, ':3 :7'), dslist[4])
        aa_eq(pt.rmsd(traj, mask='@C,N,O'), dslist[5])
Exemple #2
0
def assert_equal_topology(top, new_top, traj):
    import pytraj as pt
    assert new_top.n_atoms == top.n_atoms, 'same n_atoms'
    assert new_top.n_residues == top.n_residues, 'same n_residues'
    assert new_top.n_mols == top.n_mols, 'same n_mols'
    # there are inverted bond indices [5292 5291] vs [5291 5292]
    # so use distance to assert
    aa_eq(
        pt.distance(traj, new_top.bond_indices),
        pt.distance(traj, top.bond_indices))
    # same for dihedral_indices
    aa_eq(
        pt.dihedral(traj, new_top.dihedral_indices),
        pt.dihedral(traj, top.dihedral_indices))
    aa_eq(new_top.dihedral_indices, top.dihedral_indices)
    aa_eq(new_top.mass, top.mass)
    aa_eq(new_top.charge, top.charge)
    aa_eq(new_top.box.values, top.box.values)

    assert [res.name for res in top.residues
            ] == [res.name for res in new_top.residues], 'equal resnames'
    assert [atom.name for atom in top.atoms
            ] == [atom.name for atom in new_top.atoms], 'equal resnames'

    for res, res_new in zip(top.residues, new_top.residues):
        assert res.first_atom_index == res_new.first_atom_index, 'first atom'
        assert res.last_atom_index == res_new.last_atom_index, 'last atom'
Exemple #3
0
def assert_equal_topology(top, new_top, traj):
    import pytraj as pt
    assert new_top.n_atoms == top.n_atoms, 'same n_atoms'
    assert new_top.n_residues == top.n_residues, 'same n_residues'
    assert new_top.n_mols == top.n_mols, 'same n_mols'
    # there are inverted bond indices [5292 5291] vs [5291 5292]
    # so use distance to assert
    aa_eq(pt.distance(traj, new_top.bond_indices),
          pt.distance(traj, top.bond_indices))
    # same for dihedral_indices
    aa_eq(pt.dihedral(traj, new_top.dihedral_indices),
          pt.dihedral(traj, top.dihedral_indices))
    aa_eq(new_top.dihedral_indices, top.dihedral_indices)
    aa_eq(new_top.mass, top.mass)
    aa_eq(new_top.charge, top.charge)
    aa_eq(new_top.box.values, top.box.values)

    assert [res.name for res in top.residues
            ] == [res.name for res in new_top.residues], 'equal resnames'
    assert [atom.name for atom in top.atoms
            ] == [atom.name for atom in new_top.atoms], 'equal resnames'

    for res, res_new in zip(top.residues, new_top.residues):
        assert res.first_atom_index == res_new.first_atom_index, 'first atom'
        assert res.last_atom_index == res_new.last_atom_index, 'last atom'
Exemple #4
0
    def test_general(self):
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        fa = traj[:]
        mask = ':1@CA :14@CB'
        d0 = pt.calc_distance(traj, mask)
        d1 = pt.distance(traj, mask)
        d2 = pt.calc_distance(fa, mask)

        aa_eq(d0, d1)
        aa_eq(d0, d2)

        Nsize = 12
        arr = np.random.randint(0, 300, size=Nsize * 2).reshape(Nsize, 2)
        d3 = pt.calc_distance(fa, arr)
        d4 = pt.distance(traj, arr)
        d5 = pt.calc_distance(traj, arr)
        d6 = pt.calc_distance(fa, arr)
        d7 = pt.calc_distance([fa, traj], arr, n_frames=2 * fa.n_frames)
        d8 = pt.calc_distance([fa, traj],
                              arr,
                              n_frames=2 * fa.n_frames,
                              dtype='dataset')
        aa_eq(d3, d4)
        aa_eq(d3, d5)
        aa_eq(d3, d6)
        aa_eq(d3.T, d7.T[:fa.n_frames])
        aa_eq(d3.T, d7.T[fa.n_frames:])
        aa_eq(d7, d8.values)

        # raise
        self.assertRaises(ValueError, lambda: pt.dihedrals(traj, [[0, 3, 2]]))
Exemple #5
0
    def test_constructor_from_command_list_Trajectory(self):
        '''mutable Trajectory'''
        # use `load` method rather `iterload`
        traj = pt.load(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))

        # make sure no space-sensitivity
        # make the code (commands) ugly is my intention.
        commands = [
            'autoimage ',
            'autoimage',
            'rmsd @CA',
            'distance :3 :7',
            'distance     :3 :7',
            'vector :2 :3',
            '  distance :3 :7',
            'rms @C,N,O',
        ]

        dslist = CpptrajDatasetList()
        actlist = ActionList(commands, traj.top, dslist=dslist)

        for frame in traj:
            actlist.compute(frame)

        aa_eq(pt.rmsd(traj, mask='@CA'), dslist[0])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[1])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[2])
        # do not need to perform rmsfit again.
        aa_eq(pt.vector.vector_mask(traj, ':2 :3'), dslist[3].values)
        aa_eq(pt.distance(traj, ':3 :7'), dslist[4])
        aa_eq(pt.rmsd(traj, mask='@C,N,O'), dslist[5])
Exemple #6
0
def test_mpi_cpptraj_style():
    comm = MPI.COMM_WORLD
    # end. you are free to update anything below here

    # split remd.x.000 to N cores and do calc_surf in parallel
    root_dir = "data/"
    traj_name = root_dir + "tz2.ortho.nc"
    parm_name = root_dir + "tz2.ortho.parm7"

    # load to TrajectoryIterator
    traj = pt.iterload(traj_name, parm_name)

    # save `total_arr` to rank=0
    # others: total_arr = None
    total_arr = pt.pmap_mpi(
        ['autoimage', 'center :2', 'distance :3 :7', 'angle :3 :7 :8'], traj)

    if comm.rank != 0:
        assert total_arr is None

    if comm.rank == 0:
        # assert to serial
        from pytraj.utils.tools import dict_to_ndarray
        arr = dict_to_ndarray(total_arr)

        t0 = pt.center(traj[:].autoimage(), ':2')
        aa_eq(pt.distance(t0, ':3 :7'), arr[0])
        aa_eq(pt.angle(t0, ':3 :7 :8'), arr[1])
    def test_multiple_cores(self):
        from multiprocessing import Pool
        traj = pt.iterload('data/tz2.nc', 'data/tz2.parm7')
        for _ in range(10):
            traj._load(traj.filelist)
        saved_angle = pt.angle(traj, ':3 :10 :11')
        saved_dist = pt.distance(traj, ':3 :10')

        for n_cores in [2, 3]:
            lines = ['angle :3 :10 :11', 'distance :3 :10']
            pfuncs = partial(worker_state,
                             n_cores=n_cores,
                             traj=traj,
                             dtype='dict',
                             lines=lines)
            p = Pool(n_cores)
            data_list = p.map(pfuncs, [rank for rank in range(n_cores)])
            p.close()
            p.join()
            data_list_sorted_rank = (data[1]
                                     for data in sorted(data_list,
                                                        key=lambda x: x[0]))
            final_data = concat_dict(data_list_sorted_rank)
            aa_eq(final_data['Ang_00002'], saved_angle)
            aa_eq(final_data['Dis_00003'], saved_dist)
 def calc_autocorr(self):
     '''Autocorrelation between the center of mass
     of the two halves of the protein.'''
     half = int(self.atoms / 2)
     R = pd.Series(pt.distance(self.traj, ':1-{} :{}-{}'.format(half, half, self.atoms)))
     # [R.autocorr(lag=i) for i in range(self.frames-5)]
     self.autocorr = pt.acorr(R)
    def calc_cov(self):
        '''Calculates covariance and correlation from fluctuations, and distance matrix.'''
        # Compute covariance coefficient matrix

        # diagonal
        for i in range(self.atoms):
            for frm in self.fluct:
                self.cov[i][i] += np.sum([frm[i][q] * frm[i][q] for q in range(3)])
            self.cov[i][i] /= self.frames
        # outside diagonal, taking advantage of symmetry
        for i in range(self.atoms):
            for j in range(i+1, self.atoms):
                for frm in self.fluct:
                    self.cov[i][j] += np.sum([frm[i][q] * frm[j][q] for q in range(3)])
                self.cov[i][j] /= self.frames
                self.cov[j][i] = self.cov[i][j]
                # correlation and distance
                self.corr[i][j] = self.cov[i][j] / np.sqrt(self.cov[i][i] * self.cov[j][j])
                self.corr[j][i] = self.corr[i][j]

                self.dist[i][j] = pt.distance(
                    self.traj, ':{} :{}'.format(i+1, j+1), frame_indices=[0])[0]
                self.dist[j][i] = self.dist[i][j]

        print(u'\u2713 calculated covariance and correlation')
 def calc_avg_dist(self):
     avg_d = []
     for i in range(self.atoms - 2):
         mask = ":{} :{}".format(i+1, i+2)
         dd = np.mean(pt.distance(self.traj, mask))
         avg_d.append(dd)
     self.avg_dist = np.mean(avg_d)
Exemple #11
0
def test_iterload_and_load_remd():
    # iterload_remd
    traj = pt.iterload_remd(fn("Test_RemdTraj/rem.nc.000"),
                            fn("Test_RemdTraj/ala2.99sb.mbondi2.parm7"),
                            T=300.0)
    for frame in traj:
        assert frame.temperature == 300.0, 'frame temperature must be 300.0 K'
    dist = pt.distance(traj, '@10 @20')

    trajin_text = '''
        parm  {}
        trajin {} remdtraj remdtrajtemp 300.
        distance @10 @20
    '''.format(fn('Test_RemdTraj/ala2.99sb.mbondi2.parm7'),
               fn('Test_RemdTraj/rem.nc.000 '))
    state = pt.load_cpptraj_state(trajin_text)
    state.run()
    aa_eq(dist, state.data[-1].values)

    # load_remd
    traj2 = pt.load_remd(fn("Test_RemdTraj/rem.nc.000"),
                         fn("Test_RemdTraj/ala2.99sb.mbondi2.parm7"),
                         T=300.0)
    aa_eq(traj.xyz, traj2.xyz)

    # with Topology
    traj2 = pt.iterload_remd(fn("Test_RemdTraj/rem.nc.000"),
                             top=traj.top,
                             T=300.0)
    aa_eq(traj.xyz, traj2.xyz)
Exemple #12
0
    def test_different_cores(self):
        # use different frame_slice with different n_cores to test
        REF_0 = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))[0]

        for frame_slice in [
            (0, 100),
            (10, 100, 3),
            (50, 80, 2),
            (51, 80, 3),
        ]:
            traj = pt.iterload(
                fn('tz2.nc'), fn('tz2.parm7'), frame_slice=frame_slice)
            saved_angle = pt.angle(traj, ':3 :7 :9')
            saved_dist = pt.distance(traj, ':2 :10')
            saved_rmsd = pt.rmsd(traj, ref=REF_0, mask='@CA')

            lines = ['angle :3 :7 :9', 'distance :2 :10']

            for n_cores in [1, 2]:
                data_list = [
                    worker_by_state(rank, n_cores, traj, lines)
                    for rank in range(n_cores)
                ]
                final_data = concat_dict([x[1] for x in data_list])
                aa_eq(final_data['Ang_00002'], saved_angle)
                aa_eq(final_data['Dis_00003'], saved_dist)
Exemple #13
0
def getDistances(top, traj, list1, list2):
    #the two lists contain tuples (residue number, atom type)
    #read trajectory
    traj = pt.load(traj, top)
    #read distances
    dist = dict()
    first_in_seq = list(traj.top.residues)[0].index
    for (r1, a1), (r2, a2) in zip(list1, list2):
        dist[str(r1)+a1+':'+str(r2)+a2] = \
            pt.distance(traj, \
            ':'+str(r1-first_in_seq)+searchAT[a1]+' :'+str(r2-first_in_seq)+searchAT[a2])
    dump(dist, open(get_today() + '-rij.pkl', 'wb'))

    #make statistics on distances
    reff = dict()
    for k in sorted(list(dist.keys())):
        temp = np.array(dist[k])**(-6)
        reff[k] = np.mean(temp)**(-1. / 6)
    dump(reff, open(get_today() + '-reff.pkl', 'wb'))

    #make plots
    with PdfPages(get_today() + '-rij.pdf') as pdf:
        for k in sorted(list(dist.keys())):
            plt.figure()
            plt.hist(dist[k])
            plt.axvline(x=reff[k])
            plt.title(k)
            pdf.savefig()
            plt.close()

    return [dist, reff]
Exemple #14
0
def main():
    args = get_argument()
    #check_input_data(args)
    print(f'Current working directory: {os.getcwd()}')

    #if not check_config_file(args.config, args.verbose):
    #    sys.exit(1)
    #configfile = configparser.ConfigParser()
    #configfile.read(f'{args.config}')

    #hdlr = logging.FileHandler(
    #    f'framework_{strftime("%Y-%m-%d__%H-%M-%S", localtime())}.log')
    #logging.root.addHandler(hdlr)
    #logging.root.setLevel(logging.INFO)
    #logging.root.setLevel(logging.DEBUG)
    #logging.info(f'***Output from framework*** {strftime("%Y-%m-%d__%H-%M-%S", localtime())} \n')
    #logging.info(f'#Protein : {args.protein} -> protein.pdb \n')
    #logging.info(f'#Ligand : {args.ligand}  {configfile["LIGAND"]["name"]} \n')
    #logging.info(f'#Tunnel: {args.tunnel} \n')

    pdb = pt.load("protein_with_tunnel.pdb")
    pdb_topology = pt.load_topology('protein_with_tunnel.pdb')
    restraint_residue = []

    for i in range(1, pdb_topology.n_residues):
        #print(f'\':{i} FIL T\'')
        string_index = f':{i} :FIL T'
        if pt.distance(pdb, string_index) < 12.0:
            #    simp_top = pdb_topology.simplify()
            #name = simp_top.residue()
            restraint_residue.append(f'{pdb_topology.residue(i).index},')
            #string_residues.join(f':{pdb_topology.residue(i).index}')
            #restraint_residue.append(name)
    string_residues = ' '.join([str(elem) for elem in restraint_residue])
    print(string_residues)
Exemple #15
0
    def test_hbonds_from_pdb(self):
        traj = pt.load(fn('1L2Y.pdb'))
        hb = pt.search_hbonds(traj)

        state = pt.load_cpptraj_state('''
        parm {pdb}
        trajin {pdb}
        hbond series
        '''.format(pdb=fn('1L2Y.pdb')))
        state.run()

        for data_p, data_cpp in zip(hb.data, state.data[1:]):
            assert len(
                data_p) == traj.n_frames == 38, 'size of dataset must be 38'
            aa_eq(data_p, data_cpp.values)

        # make sure distances are smaller than cutoff
        distance_cutoff = 2.5
        angle_cutoff = 135.
        hb = pt.search_hbonds(traj)
        distances = pt.distance(traj, hb.get_amber_mask()[0])
        angles = pt.angles(traj, hb.get_amber_mask()[1])
        dist_indices = np.where(distances > distance_cutoff)
        angle_indices = np.where(angles < angle_cutoff)

        saved_donor_acceptors = [
            'ASP9_OD2-ARG16_NH1-HH12', 'ASP9_OD2-ARG16_NH2-HH22',
            'ASP9_OD2-ARG16_NE-HE', 'ASP9_OD2-ARG16_NH2-HH21',
            'ASP9_OD2-ARG16_NH1-HH11'
        ]

        donor_acceptors = pt.search_hbonds(traj, ':9,16').donor_acceptor
        assert saved_donor_acceptors == donor_acceptors, 'saved_donor_acceptors'

        aa_eq(hb.total_solute_hbonds(), hb.data['total_solute_hbonds'])
Exemple #16
0
    def getDistances(self):
        #read distances
        self.dist = dict()
        first_in_seq = list(self.traj.top.residues)[0].index

        for (r1, a1), (r2, a2) in zip(self.list1, self.list2):
            self.dist[str(r1)+a1+':'+str(r2)+a2] = \
                pt.distance(self.traj, \
                ':'+str(r1-first_in_seq)+searchAT[a1]+' :'+str(r2-first_in_seq)+searchAT[a2])
            #print(str(r1)+a1+':'+str(r2)+a2, self.dist[str(r1)+a1+':'+str(r2)+a2])
        dump(self.dist, open(get_today() + '-rij.pkl', 'wb'))

        #make statistics on distances
        self.reff = dict()
        for k in sorted(list(self.dist.keys())):
            temp = np.array(self.dist[k])**(-6)
            self.reff[k] = np.mean(temp)**(-1. / 6)
        dump(self.reff, open(get_today() + '-reff.pkl', 'wb'))

        #make plots
        with PdfPages(get_today() + '-rij.pdf') as pdf:
            for k in sorted(list(self.dist.keys())):
                plt.figure()
                plt.hist(self.dist[k])
                plt.axvline(x=self.reff[k])
                plt.title(k)
                pdf.savefig()
                plt.close()
Exemple #17
0
    def test_distance_with_dry_traj_and_PBC_topology(self):
        '''Issue: trajectory has no box but its topology does has box.
        '''
        traj = pt.iterload(
            fn('dry_traj_with_PBC_top/strip.nc'),
            fn('dry_traj_with_PBC_top/strip.prmtop'))
        assert traj.top.has_box(), 'Topology must have box for testing'

        correct_distance_with_image_True = pt.distance(
            traj, ':8@OP2 :5@N1', image=True) # image=True will be ignored with message
        correct_distance_with_image_False = pt.distance(
            traj, ':8@OP2 :5@N1', image=False)
        expected_distance = [3.08030475, 2.68452183]

        aa_eq(correct_distance_with_image_True, expected_distance)
        aa_eq(correct_distance_with_image_False, expected_distance)
Exemple #18
0
 def calc_autocorr(self):
     '''Autocorrelation.'''
     half = int(self.atoms / 2)
     R = pd.Series(pt.distance(
         self.traj, ':1-{} :{}-{}'.format(half, half, self.atoms)))
     # [R.autocorr(lag=i) for i in range(self.frames-5)]
     self.autocorr = pt.acorr(R)
    def test_atom_distance(self):
        traj = pt.iterload(tz2_trajin, tz2_top)
        top = traj.top

        ref = traj[0]
        # test for 1st frame
        top.set_reference(ref)
        ref.top = top

        # all atoms within 5 Angtrom from :3@CA
        indices = top.select(":3@CA <@5.0")

        saved_indices = np.loadtxt(
            fn("mask.tz2.dat"), skiprows=1, usecols=(1, ))

        neighbors_smaller = pt.search_neighbors(
            traj, mask=':3@CA <@5.0', frame_indices=[
                0,
            ])
        # subtract by '1' since cpptraj uses "1" as starting index for output
        saved_indices = saved_indices - 1
        aa_eq(indices, saved_indices)
        aa_eq(neighbors_smaller.values, indices)

        # re-calculate the distance
        ca_indices = pt.select_atoms(':3@CA', traj.top)
        all_pairs = list(product(ca_indices, indices))
        distances = pt.tools.flatten(pt.distance(ref, all_pairs))
        for dist in distances:
            assert dist < 5.0, 'all distances must be smaller than 5.0 Angstrom'

        # test larger
        # why do we need to set reference frame again?
        top.set_reference(ref)
        indices_larger = top.select(":3@CA >@5.0")
        all_pairs_larger = list(product(ca_indices, indices_larger))
        distances = pt.tools.flatten(pt.distance(ref, all_pairs_larger))
        for dist in distances:
            assert dist > 5.0, 'all distances must be larger than 5.0 Angstrom'

        # search_neighbors
        neighbors_larger = pt.search_neighbors(
            traj, mask=':3@CA >@5.0', frame_indices=[
                0,
            ])
        aa_eq(neighbors_larger.values, indices_larger)
    def test_atom_distance(self):
        traj = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")
        top = traj.top

        ref = traj[0]
        # test for 1st frame
        top.set_distance_mask_reference(ref)
        ref.top = top

        # all atoms within 5 Angtrom from :3@CA
        indices = top.select(":3@CA <@5.0")

        saved_indices = np.loadtxt("./data/mask.tz2.dat",
                                   skiprows=1,
                                   usecols=(1, ))

        neighbors_smaller = pt.search_neighbors(traj,
                                                mask=':3@CA <@5.0',
                                                frame_indices=[0, ])
        # subtract by '1' since cpptraj uses "1" as starting index for output
        saved_indices = saved_indices - 1
        aa_eq(indices, saved_indices)
        aa_eq(neighbors_smaller.values, indices)

        # re-calculate the distance
        ca_indices = pt.select_atoms(':3@CA', traj.top)
        all_pairs = list(product(ca_indices, indices))
        distances = pt.tools.flatten(pt.distance(ref, all_pairs))
        for dist in distances:
            assert dist < 5.0, 'all distances must be smaller than 5.0 Angstrom'

        # test larger
        # why do we need to set reference frame again?
        top.set_distance_mask_reference(ref)
        indices_larger = top.select(":3@CA >@5.0")
        all_pairs_larger = list(product(ca_indices, indices_larger))
        distances = pt.tools.flatten(pt.distance(ref, all_pairs_larger))
        for dist in distances:
            assert dist > 5.0, 'all distances must be larger than 5.0 Angstrom'

        # search_neighbors
        neighbors_larger = pt.search_neighbors(traj,
                                               mask=':3@CA >@5.0',
                                               frame_indices=[0, ])
        aa_eq(neighbors_larger.values, indices_larger)
Exemple #21
0
 def calc_TA_MSD(self):
     '''Time averaged mean squared deviation.'''
     half = int(self.atoms / 2)
     dist = pt.distance(self.traj, ':1-{} :{}-{}'.format(half, half, self.atoms))
     aux = []
     for lag in range(len(dist) - 5):
         dif = np.mean([(dist[i + lag] - dist[i]) ** 2 for i in range(len(dist)-lag)])
         aux.append(dif)
     self.TA_MSD = aux
    def test_constructor_from_command_list_TrajectoryIterator_no_DatasetList(
            self):
        traj = pt.iterload(tc5b_trajin, tc5b_top)

        commands = [
            'rmsd @CA', 'distance :3 :7', 'distance     :3 :7', 'vector :2 :3'
        ]

        actlist = ActionList(commands, top=traj.top)

        for frame in traj:
            actlist.compute(frame)

        aa_eq(pt.rmsd(traj, mask='@CA'), actlist.data[0])
        aa_eq(pt.distance(traj, ':3 :7'), actlist.data[1])
        aa_eq(pt.distance(traj, ':3 :7'), actlist.data[2])
        aa_eq(pt.vector.vector_mask(traj(rmsfit=(0, '@CA')), ':2 :3'),
              actlist.data[3].values)
Exemple #23
0
 def calc_corr(self):
     '''Calculates correlation and distance matrices.'''
     # Compute correlation coefficient matrix
     # Calculate mutual distances between residues
     for i in range(self.atoms):
         for j in range(self.atoms):
             self.corr[i][j] = self.cov[i][j] / np.sqrt(self.cov[i][i] * self.cov[j][j])
             self.dist[i][j] = pt.distance(
                 self.traj, ':{} :{}'.format(i+1, j+1), frame_indices=[0])[0]
     print(u'\u2713 calculated correlations')
    def test_distance_with_dry_traj_and_PBC_topology(self):
        '''Situation: there is dry traj (no box) but Topology has box info
        '''
        traj = pt.iterload(
            fn('dry_traj_with_PBC_top/strip.nc'),
            fn('dry_traj_with_PBC_top/strip.prmtop'))
        assert traj.top.has_box(), 'Topology must have box for testing'

        correct_distance_with_image_True = pt.distance(
            traj, ':8@OP2 :5@N1', image=True)
        correct_distance_with_image_False = pt.distance(
            traj, ':8@OP2 :5@N1', image=False)
        state = pt.load_batch(traj, '''
        distance :8@OP2 :5@N1
        ''')
        state.run()
        expected_distance = [3.08030475, 2.68452183]

        aa_eq(correct_distance_with_image_False, expected_distance)
        aa_eq(correct_distance_with_image_True, [0., 0.])
Exemple #25
0
    def test_constructor_from_command_list_TrajectoryIterator_no_DatasetList(
            self):
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")

        commands = ['rmsd @CA', 'distance :3 :7', 'distance     :3 :7',
                    'vector :2 :3']

        actlist = ActionList(commands, top=traj.top)

        for frame in traj:
            actlist.compute(frame)

        aa_eq(pt.rmsd(traj, mask='@CA'), actlist.data[0])
        aa_eq(pt.distance(traj, ':3 :7'), actlist.data[1])
        aa_eq(pt.distance(traj, ':3 :7'), actlist.data[2])
        aa_eq(
            pt.vector.vector_mask(
                traj(rmsfit=(0, '@CA')),
                ':2 :3'),
            actlist.data[3].values)
Exemple #26
0
    def test_constructor_from_command_list_TrajectoryIterator(self):
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")

        commands = [
            'rmsd @CA', 'distance :3 :7', 'distance     :3 :7', 'vector :2 :3'
        ]

        dslist = CpptrajDatasetList()
        actlist = ActionList(commands, traj.top, dslist=dslist)

        d0 = dslist.add('ref_frame', 'my_ref')
        d0.add_frame(traj[3])

        for frame in traj:
            actlist.compute(frame)

        aa_eq(pt.rmsd(traj, mask='@CA'), dslist[0])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[1])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[2])
        aa_eq(pt.vector.vector_mask(traj(rmsfit=(0, '@CA')), ':2 :3'),
              dslist[3].values)
def candidatevalues(thread):
    # Returns a space-separated string containing all the candidate OP values requested by the user in the form of the
    # candidateops list object.
    output = ''
    traj = pytraj.iterload(thread.start_name, thread.prmtop)
    for index in range(0, len(candidateops[0])):
        value = pytraj.distance(traj,
                                mask=candidateops[0][index] + ' ' +
                                candidateops[1][index])
        output += str(value) + ' '

    return output
    def test_residue_distance(self):
        traj = pt.iterload(tz2_trajin, tz2_top)
        top = traj.top

        ref = traj[0]
        top.set_reference(ref)
        ref.top = top

        indices_smaler = pt.select_atoms(':3@CA <:5.0', top)
        ca_indices = pt.select_atoms(':3@CA', traj.top)
        all_pairs_smaller = list(product(ca_indices, indices_smaler))

        pt.tools.flatten(pt.distance(ref, all_pairs_smaller))
Exemple #29
0
    def test_residue_distance(self):
        traj = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")
        top = traj.top

        ref = traj[0]
        top.set_distance_mask_reference(ref)
        ref.top = top

        indices_smaler = pt.select_atoms(':3@CA <:5.0', top)
        ca_indices = pt.select_atoms(':3@CA', traj.top)
        all_pairs_smaller = list(product(ca_indices, indices_smaler))

        distances = pt.tools.flatten(pt.distance(ref, all_pairs_smaller))
Exemple #30
0
    def test_constructor_from_command_list_TrajectoryIterator(self):
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")

        commands = ['rmsd @CA', 'distance :3 :7', 'distance     :3 :7',
                    'vector :2 :3']

        dslist = CpptrajDatasetList()
        actlist = ActionList(commands, traj.top, dslist=dslist)

        d0 = dslist.add('ref_frame', 'my_ref')
        d0.add_frame(traj[3])

        for frame in traj:
            actlist.compute(frame)

        aa_eq(pt.rmsd(traj, mask='@CA'), dslist[0])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[1])
        aa_eq(pt.distance(traj, ':3 :7'), dslist[2])
        aa_eq(
            pt.vector.vector_mask(
                traj(rmsfit=(0, '@CA')),
                ':2 :3'),
            dslist[3].values)
Exemple #31
0
    def test_pairwise(self):
        traj = pt.iterload('data/tz2.nc', 'data/tz2.parm7')
        distances = pt.pairwise_distance(traj, '@CA', '@CB')[0]

        ca_indices = pt.select_atoms('@CA', traj.top)
        cb_indices = pt.select_atoms('@CB', traj.top)
        known_shape = (traj.n_frames, len(ca_indices), len(cb_indices))
        assert known_shape == distances.shape, 'distance array shape'

        slow_distances = []
        for ca_i in ca_indices:
            for cb_i in cb_indices:
                slow_distances.append(pt.distance(traj, [ca_i, cb_i]))
        slow_distances = np.array(slow_distances).T
        aa_eq(slow_distances.flatten(), distances.flatten())
    def test_calc_atomicfluct_with_unitcell(self):
        # use iterload for load_batch
        traj = pt.iterload("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")
        state = pt.load_cpptraj_state('''
        distance :3 :7
        atomicfluct @CA out output/test.agr
        distance :3 :7''', traj)
        state.run()

        # use `load` method
        t0 = pt.load("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")
        data = pt.atomicfluct(traj, '@CA')
        aa_eq(data, state.data[-2].values)
        # make sure that traj's coordinates were not altered
        # https://github.com/Amber-MD/pytraj/issues/1166
        aa_eq(pt.distance(t0, ':3 :7'), state.data[-1])
        aa_eq(traj.xyz, t0.xyz)
    def test_calc_atomicfluct_with_unitcell(self):
        # use iterload for load_batch
        traj = pt.iterload(fn('tz2.ortho.nc'), fn('tz2.ortho.parm7'))
        state = pt.load_cpptraj_state('''
        distance :3 :7
        atomicfluct @CA out output/test.agr
        distance :3 :7''', traj)
        state.run()

        # use `load` method
        t0 = pt.load(fn('tz2.ortho.nc'), fn('tz2.ortho.parm7'))
        data = pt.atomicfluct(traj, '@CA')
        aa_eq(data, state.data[-2].values)
        # make sure that traj's coordinates were not altered
        # https://github.com/Amber-MD/pytraj/issues/1166
        aa_eq(pt.distance(t0, ':3 :7'), state.data[-1])
        aa_eq(traj.xyz, t0.xyz)
Exemple #34
0
    def test_calculate_distance_without_specifying_n_frames(self):
        # TrajectoryIterator
        traj = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))
        arr = pt.distance(traj(stop=4), [0, 5])
        arr1 = pt.distance(traj(stop=4), [0, 5], n_frames=4)
        assert np.all(arr == arr1)

        arr2 = pt.distance(traj(stop=1000), [0, 5])
        arr3 = pt.distance(traj(stop=traj.n_frames), [0, 5])
        assert np.all(arr2 == arr3)

        # Trajectory
        traj = traj[:]
        arr = pt.distance(traj(stop=4), [0, 5])
        arr1 = pt.distance(traj(stop=4), [0, 5], n_frames=4)
        assert np.all(arr == arr1)

        arr2 = pt.distance(traj(stop=1000), [0, 5])
        arr3 = pt.distance(traj(stop=traj.n_frames), [0, 5])
        assert np.all(arr2 == arr3)
Exemple #35
0
    def test_0(self):
        from itertools import product
        import numpy as np
        traj = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))
        top = traj.top
        d0 = pt.mindist(traj, "@CA @CB")
        i0 = top("@CA").indices
        i1 = top("@CB").indices
        combinations = np.array(list(product(i0, i1)))
        d1 = pt.distance(traj, combinations).T

        min_list = []
        for arr0 in d1:
            min_list.append(np.min(arr0))
        aa_eq(d0, min_list)

        d0 = pt.mindist(traj, [[0, 1], [2, 3]])
        d1 = pt.mindist(traj, '@1,2 @3,4')
        aa_eq(d0, d1)
Exemple #36
0
    def test_calculate_distance_without_specifying_n_frames(self):
        # TrajectoryIterator
        import numpy as np
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        arr = pt.distance(traj(stop=4), [0, 5])
        arr1 = pt.distance(traj(stop=4), [0, 5], n_frames=4)
        assert np.all(arr == arr1)

        arr2 = pt.distance(traj(stop=1000), [0, 5])
        arr3 = pt.distance(traj(stop=traj.n_frames), [0, 5])
        assert np.all(arr2 == arr3)

        # Trajectory
        traj = traj[:]
        arr = pt.distance(traj(stop=4), [0, 5])
        arr1 = pt.distance(traj(stop=4), [0, 5], n_frames=4)
        assert np.all(arr == arr1)

        arr2 = pt.distance(traj(stop=1000), [0, 5])
        arr3 = pt.distance(traj(stop=traj.n_frames), [0, 5])
        assert np.all(arr2 == arr3)
Exemple #37
0
    def test_c_command_style(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))

        angle_ = pt.angle(traj, ':3 :4 :5')
        distance_ = pt.distance(traj, '@10 @20')

        data = pt.pmap(['angle :3 :4 :5', 'distance @10 @20'], traj, n_cores=2)
        assert isinstance(data, OrderedDict), 'must be OrderDict'
        arr = pt.tools.dict_to_ndarray(data)
        aa_eq(angle_, arr[0])
        aa_eq(distance_, arr[1])

        # as whole text, case 1
        data = pt.pmap(
            '''angle :3 :4 :5
        distance @10 @20''', traj, n_cores=2)
        assert isinstance(data, OrderedDict), 'must be OrderDict'
        arr = pt.tools.dict_to_ndarray(data)
        aa_eq(angle_, arr[0])
        aa_eq(distance_, arr[1])
Exemple #38
0
    def test_c_command_style(self):
        traj = pt.iterload("data/tz2.nc", "data/tz2.parm7")

        angle_ = pt.angle(traj, ':3 :4 :5')
        distance_ = pt.distance(traj, '@10 @20')

        data = pt.pmap(['angle :3 :4 :5', 'distance @10 @20'], traj, n_cores=2)
        assert isinstance(data, OrderedDict), 'must be OrderDict'
        arr = pt.tools.dict_to_ndarray(data)
        aa_eq(angle_, arr[0])
        aa_eq(distance_, arr[1])

        # as whole text, case 1
        data = pt.pmap('''angle :3 :4 :5
        distance @10 @20''',
                       traj,
                       n_cores=2)
        assert isinstance(data, OrderedDict), 'must be OrderDict'
        arr = pt.tools.dict_to_ndarray(data)
        aa_eq(angle_, arr[0])
        aa_eq(distance_, arr[1])
    def test_different_cores(self):
        # use different frame_slice with different n_cores to test
        REF_0 = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")[0]

        for frame_slice in [(0, 100),
                            (10, 100, 3),
                            (50, 80, 2),
                            (51, 80, 3), ]:
            traj = pt.iterload("./data/tz2.nc",
                               "./data/tz2.parm7",
                               frame_slice=frame_slice)
            saved_angle = pt.angle(traj, ':3 :7 :9')
            saved_dist = pt.distance(traj, ':2 :10')
            saved_rmsd = pt.rmsd(traj, ref=REF_0, mask='@CA')

            lines = ['angle :3 :7 :9', 'distance :2 :10']

            for n_cores in [2, 3]:
                data_list = [worker_state(rank, n_cores, traj, lines)
                             for rank in range(n_cores)]
                final_data = concat_dict([x[1] for x in data_list])
                aa_eq(final_data['Ang_00002'], saved_angle)
                aa_eq(final_data['Dis_00003'], saved_dist)
Exemple #40
0
    def test_hbonds_from_pdb(self):
        traj = pt.load('data/1L2Y.pdb')
        hb = pt.search_hbonds(traj)

        state = pt.load_cpptraj_state('''
        parm data/1L2Y.pdb
        trajin data/1L2Y.pdb
        hbond series
        ''')
        state.run()

        for data_p, data_cpp in zip(hb.data, state.data[1:]):
            assert len(
                data_p) == traj.n_frames == 38, 'size of dataset must be 38'
            aa_eq(data_p, data_cpp)

        # make sure distances are smaller than cutoff
        distance_cutoff = 2.5
        angle_cutoff = 135.
        hb = pt.search_hbonds(traj)
        distances = pt.distance(traj, hb.get_amber_mask()[0])
        angles = pt.angles(traj, hb.get_amber_mask()[1])
        dist_indices = np.where(distances > distance_cutoff)
        angle_indices = np.where(angles < angle_cutoff)
        print('FILL ME', dist_indices, angle_indices)

        saved_donor_acceptors = ['ASP9_OD2-ARG16_NH1-HH12',
                                'ASP9_OD2-ARG16_NH2-HH22',
                                'ASP9_OD2-ARG16_NE-HE',
                                'ASP9_OD2-ARG16_NH2-HH21',
                                'ASP9_OD2-ARG16_NH1-HH11']

        donor_acceptors = pt.search_hbonds(traj, ':9,16').donor_acceptor
        assert saved_donor_acceptors == donor_acceptors, 'saved_donor_acceptors'

        aa_eq(hb.total_solute_hbonds(), hb.data['total_solute_hbonds'])
Exemple #41
0
    def test_iterload_and_load_remd(self):
        # iterload_remd
        traj = pt.iterload_remd("data/Test_RemdTraj/rem.nc.000",
                                "data/Test_RemdTraj/ala2.99sb.mbondi2.parm7",
                                T=300.0)
        for frame in traj:
            assert frame.temperature == 300.0, 'frame temperature must be 300.0 K'
        dist = pt.distance(traj, '@10 @20')

        state = pt.load_cpptraj_state(self.trajin_text)
        state.run()
        aa_eq(dist, state.data[-1])

        # load_remd
        traj2 = pt.load_remd("data/Test_RemdTraj/rem.nc.000",
                             "data/Test_RemdTraj/ala2.99sb.mbondi2.parm7",
                             T=300.0)
        aa_eq(traj.xyz, traj2.xyz)

        # with Topology
        traj2 = pt.iterload_remd("data/Test_RemdTraj/rem.nc.000",
                                 top=traj.top,
                                 T=300.0)
        aa_eq(traj.xyz, traj2.xyz)
import pytraj as pt

# use `iterload` to save memory
traj = pt.iterload("../tests/data/tz2.ortho.nc",
                   "../tests/data/tz2.ortho.parm7")
print(traj)

# perform distance calculation with cpptraj mask
pt.distance(traj, ':2 :3')  # index starts from 1
pt.distance(traj, [':2 :3', '@CA @CB'])

# perform distance calculation with atom_indices array
pt.distance(traj, [[2, 5], [7, 9], [10, 13]])  # index starts from 0
import pytraj as pt
from pytraj.testing import aa_eq

comm = MPI.COMM_WORLD
# end. you are free to update anything below here

# split remd.x.000 to N cores and do calc_surf in parallel
root_dir = "data/"
traj_name = root_dir + "tz2.ortho.nc"
parm_name = root_dir + "tz2.ortho.parm7"

# load to TrajectoryIterator
traj = pt.iterload(traj_name, parm_name)

# save `total_arr` to rank=0
# others: total_arr = None
total_arr = pt.pmap_mpi(
    ['autoimage', 'center :2', 'distance :3 :7', 'angle :3 :7 :8'], traj)

if comm.rank != 0:
    assert total_arr is None

if comm.rank == 0:
    # assert to serial
    from pytraj.tools import dict_to_ndarray
    arr = dict_to_ndarray(total_arr)

    t0 = pt.center(traj[:].autoimage(), ':2')
    aa_eq(pt.distance(t0, ':3 :7'), arr[0])
    aa_eq(pt.angle(t0, ':3 :7 :8'), arr[1])
def test_pytraj():
    print('pytraj')
    traj = pt.iterload('GAAC3.1000frames.nc', 'GAAC.parm7', frame_slice=(0, 1000))
    data = pt.distance(traj, masklist)
Exemple #45
0
usage = '''python ./plot_bond_distance.py input.parm7 input.rst7
'''

import sys
import pytraj as pt

top, crd = sys.argv[1:]

traj = pt.iterload(crd, top)
indices = traj.top.bond_indices

distances = pt.distance(traj, indices)

from matplotlib import pyplot as plt
try:
    import seaborn as snb
    snb.set()
except ImportError:
    pass

plt.plot(distances, 'bo')
pt.show()