Exemple #1
0
def test_warp_by_vector():
    # Test when inplace=False (default)
    data = examples.load_sphere_vectors()
    warped = data.warp_by_vector()
    assert data.n_points == warped.n_points
    assert not np.allclose(data.points, warped.points)
    warped = data.warp_by_vector(factor=3)
    assert data.n_points == warped.n_points
    assert not np.allclose(data.points, warped.points)
    # Test when inplace=True
    foo = examples.load_sphere_vectors()
    warped = foo.warp_by_vector()
    foo.warp_by_vector(inplace=True)
    assert np.allclose(foo.points, warped.points)
Exemple #2
0
"""
Warping by Vectors
~~~~~~~~~~~~~~~~~~

This example applies the ``warp_by_vector`` filter to a sphere mesh that has
3D displacement vectors defined at each node.
"""

###############################################################################
# We first compare the unwarped sphere to the warped sphere.

import pyvista as pv
from pyvista import examples

sphere = examples.load_sphere_vectors()
warped = sphere.warp_by_vector()

p = pv.Plotter(shape=(1, 2))
p.subplot(0, 0)
p.add_text("Before warp")
p.add_mesh(sphere, color='white')
p.subplot(0, 1)
p.add_text("After warp")
p.add_mesh(warped, color='white')
p.show()

###############################################################################
# We then use several values for the scale factor applied to the warp
# operation. Applying a warping factor that is too high can often lead to
# unrealistic results.