def gen_waveform(y_predicted, Y_mean, Y_std, post_filter=False, coef=1.4, fs=16000, mge_training=True): alpha = pysptk.util.mcepalpha(fs) fftlen = fftlen = pyworld.get_cheaptrick_fft_size(fs) frame_period = hp_acoustic.frame_period # Generate parameters and split streams mgc, lf0, vuv, bap = gen_parameters(y_predicted, Y_mean, Y_std, mge_training) if post_filter: mgc = merlin_post_filter(mgc, alpha, coef=coef) spectrogram = pysptk.mc2sp(mgc, fftlen=fftlen, alpha=alpha) aperiodicity = pyworld.decode_aperiodicity(bap.astype(np.float64), fs, fftlen) f0 = lf0.copy() f0[vuv < 0.5] = 0 f0[np.nonzero(f0)] = np.exp(f0[np.nonzero(f0)]) generated_waveform = pyworld.synthesize(f0.flatten().astype(np.float64), spectrogram.astype(np.float64), aperiodicity.astype(np.float64), fs, frame_period) # Convert range to int16 generated_waveform = generated_waveform / \ np.max(np.abs(generated_waveform)) * 32767 # return features as well to compare natural/genearted later return generated_waveform, mgc, lf0, vuv, bap
def world2wav(feature, frame_period): hparams = hp mgc_idx = 0 lf0_idx = mgc_idx + hparams.num_mgc vuv_idx = lf0_idx + hparams.num_lf0 bap_idx = vuv_idx + hparams.num_vuv mgc = feature[:, mgc_idx:mgc_idx + hparams.num_mgc] lf0 = feature[:, lf0_idx:lf0_idx + hparams.num_lf0] vuv = feature[:, vuv_idx:vuv_idx + hparams.num_vuv] bap = feature[:, bap_idx:bap_idx + hparams.num_bap] fs = hparams.sample_rate alpha = pysptk.util.mcepalpha(fs) fftlen = pyworld.get_cheaptrick_fft_size(fs) spectrogram = pysptk.mc2sp(mgc, fftlen=fftlen, alpha=alpha) indexes = (vuv < 0.5).flatten() bap[indexes] = np.zeros(hparams.num_bap) aperiodicity = pyworld.decode_aperiodicity(bap.astype(np.float64), fs, fftlen) f0 = lf0.copy() f0[vuv < 0.5] = 0 f0[np.nonzero(f0)] = np.exp(f0[np.nonzero(f0)]) return pyworld.synthesize(f0.flatten().astype(np.float64), spectrogram.astype(np.float64), aperiodicity.astype(np.float64), fs, frame_period)
def vizualize_hardcoded(x, mgc, lf0, f0, vuv, fs, timeaxis): plt.subplot(5, 1, 1) plt.plot(x, label="Wav") plt.xlim(0, len(x)) # Spec plt.subplot(5, 1, 2) sp = pysptk.mc2sp(mgc[:, :60], alpha=alpha, fftlen=fftlen) logsp = np.log(sp) librosa.display.specshow(logsp.T, sr=fs, hop_length=hop_length, x_axis="time", y_axis="linear") # Lof_f0, Vuv plt.subplot(5, 1, 3) # plt.plot(np.exp(lf0[:,0]), linewidth=2, label="Continuous log-f0") plt.plot(f0, linewidth=2, label="Continuous log-f0") plt.xlim(0, len(f0)) plt.subplot(5, 1, 4) plt.plot(vuv, linewidth=2, label="Voiced/unvoiced flag") plt.xlim(0, len(vuv)) plt.legend(prop={"size": 14}, loc="upper right") # aperiodicity plt.subplot(5, 1, 5) bap = bap[:, :2] bap = np.ascontiguousarray(bap).astype(np.float64) aperiodicity = pyworld.decode_aperiodicity(bap, fs, fftlen) librosa.display.specshow(aperiodicity.T, sr=fs, hop_length=hop_length, x_axis="time", y_axis="linear") plt.show()
def synthesis(): # pdb.set_trace() lf0_file = "p225_001.lf0" bap_file_name="p225_001.bap" mgc_file_name="p225_001.mgc" fl=4096 sr=48000 # pdb.set_trace() lf0 = read_binfile(lf0_file, dim=1, dtype=np.float32) zeros_index = np.where(lf0 == -1E+10) nonzeros_index = np.where(lf0 != -1E+10) f0 = lf0.copy() f0[zeros_index] = 0 f0[nonzeros_index] = np.exp(lf0[nonzeros_index]) f0 = f0.astype(np.float64) bap_dim = 5 bap = read_binfile(bap_file_name, dim=bap_dim, dtype=np.float32) ap = pyworld.decode_aperiodicity(bap.astype(np.float64).reshape(-1, bap_dim), sr, fl) mc = read_binfile(mgc_file_name, dim=60, dtype=np.float32) alpha = pysptk.util.mcepalpha(sr) sp = pysptk.mc2sp(mc.astype(np.float64), fftlen=fl, alpha=alpha) wav = pyworld.synthesize(f0, sp, ap, sr, 5) x2 = wav * 32768 x2 = x2.astype(np.int16) scipy.io.wavfile.write("resynthesis.wav", sr, x2)
def gen_world_params(mgc, lf0, vuv, bap, sample_rate, vuv_threshold=0.3): """Generate WORLD parameters from mgc, lf0, vuv and bap. Args: mgc (ndarray): mgc lf0 (ndarray): lf0 vuv (ndarray): vuv bap (ndarray): bap sample_rate (int): sample rate vuv_threshold (float): threshold for VUV Returns: tuple: tuple of f0, spectrogram and aperiodicity """ fftlen = pyworld.get_cheaptrick_fft_size(sample_rate) alpha = pysptk.util.mcepalpha(sample_rate) spectrogram = pysptk.mc2sp(np.ascontiguousarray(mgc), fftlen=fftlen, alpha=alpha) aperiodicity = pyworld.decode_aperiodicity( np.ascontiguousarray(bap).astype(np.float64), sample_rate, fftlen ) # fill aperiodicity with ones for unvoiced regions aperiodicity[vuv.reshape(-1) < vuv_threshold, :] = 1.0 # WORLD fails catastrophically for out of range aperiodicity aperiodicity = np.clip(aperiodicity, 0.0, 1.0) f0 = lf0.copy() f0[np.nonzero(f0)] = np.exp(f0[np.nonzero(f0)]) f0[vuv < vuv_threshold] = 0 f0 = f0.flatten().astype(np.float64) spectrogram = spectrogram.astype(np.float64) aperiodicity = aperiodicity.astype(np.float64) return f0, spectrogram, aperiodicity
def gen_waveform(self, feature): mcep_dim = self.config['mcep_order'] + 1 mgc = feature[:, :mcep_dim] lf0 = feature[:, mcep_dim:mcep_dim + 1] vuv = feature[:, mcep_dim + 1: mcep_dim + 2] bap = feature[:, mcep_dim + 2:] spectrogram = pysptk.mc2sp( mgc, fftlen=self.config['fft_size'], alpha=pysptk.util.mcepalpha(self.config['sampling_rate']), ) aperiodicity = pyworld.decode_aperiodicity( bap.astype(np.float64), self.config['sampling_rate'], self.config['fft_size'], ) f0 = lf0.copy() f0[vuv < 0.5] = 0 f0[np.nonzero(f0)] = np.exp(f0[np.nonzero(f0)]) waveform = pyworld.synthesize( f0.flatten().astype(np.float64), spectrogram.astype(np.float64), aperiodicity.astype(np.float64), self.config['sampling_rate'], self.config['hop_size_in_ms'], ) return waveform
def generate(self, parm_var, do_postfilter=True): config = self.analysis_config for path in self.paths: file_id = splitext(basename(path))[0] print('Synthesizing %s ... ' % (file_id), end='') mgc, lf0, vuv, bap = self._generate_parameters(path, parm_var) if do_postfilter: mgc = merlin_post_filter(mgc, config.alpha) sp = pysptk.mc2sp(mgc, fftlen=config.fft_length, alpha=config.alpha) ap = pyworld.decode_aperiodicity(bap.astype(np.float64), config.sampling_rate, config.fft_length) f0 = self._lf0_to_f0(lf0, vuv) generated = pyworld.synthesize(f0.flatten().astype(np.float64), sp.astype(np.float64), ap.astype(np.float64), config.sampling_rate, config.frame_period) with open(join(self.out_dir, file_id + '.wav'), 'wb') as f: f.write(Audio(generated, rate=config.sampling_rate).data) print('done!')
def gen_waveform(labels, acoustic_features, acoustic_out_scaler, binary_dict, continuous_dict, stream_sizes, has_dynamic_features, subphone_features="coarse_coding", log_f0_conditioning=True, pitch_idx=None, num_windows=3, post_filter=True, sample_rate=48000, frame_period=5, relative_f0=True): windows = get_windows(num_windows) # Apply MLPG if necessary if np.any(has_dynamic_features): acoustic_features = multi_stream_mlpg( acoustic_features, acoustic_out_scaler.var_, windows, stream_sizes, has_dynamic_features) static_stream_sizes = get_static_stream_sizes( stream_sizes, has_dynamic_features, len(windows)) else: static_stream_sizes = stream_sizes # Split multi-stream features mgc, target_f0, vuv, bap = split_streams(acoustic_features, static_stream_sizes) # Gen waveform by the WORLD vocodoer fftlen = pyworld.get_cheaptrick_fft_size(sample_rate) alpha = pysptk.util.mcepalpha(sample_rate) if post_filter: mgc = merlin_post_filter(mgc, alpha) spectrogram = pysptk.mc2sp(mgc, fftlen=fftlen, alpha=alpha) aperiodicity = pyworld.decode_aperiodicity(bap.astype(np.float64), sample_rate, fftlen) ### F0 ### if relative_f0: diff_lf0 = target_f0 # need to extract pitch sequence from the musical score linguistic_features = fe.linguistic_features(labels, binary_dict, continuous_dict, add_frame_features=True, subphone_features=subphone_features) f0_score = _midi_to_hz(linguistic_features, pitch_idx, False)[:, None] lf0_score = f0_score.copy() nonzero_indices = np.nonzero(lf0_score) lf0_score[nonzero_indices] = np.log(f0_score[nonzero_indices]) lf0_score = interp1d(lf0_score, kind="slinear") f0 = diff_lf0 + lf0_score f0[vuv < 0.5] = 0 f0[np.nonzero(f0)] = np.exp(f0[np.nonzero(f0)]) else: f0 = target_f0 generated_waveform = pyworld.synthesize(f0.flatten().astype(np.float64), spectrogram.astype(np.float64), aperiodicity.astype(np.float64), sample_rate, frame_period) return generated_waveform
def inv_world_spectrogram(f0, sp, ap, sr=_sr, **kwargs): """world声码器频谱转为语音。""" frame_period = kwargs.get("frame_period", pw.default_frame_period) f0_floor = kwargs.get("f0_floor", pw.default_f0_floor) fft_size = kwargs.get("fft_size", pw.get_cheaptrick_fft_size(sr, f0_floor)) sp_dec = pw.decode_spectral_envelope(sp, sr, fft_size=fft_size) ap_dec = pw.decode_aperiodicity(ap, sr, fft_size=fft_size) y = pw.synthesize(f0, sp_dec, ap_dec, sr, frame_period=frame_period) return y
def synthesize(lf0, mgc, bap, hp): lf0 = np.where(lf0 < 1, 0.0, lf0) f0 = f0_denormalize(lf0) sp = sp_denormalize(mgc, hp) ap = ap_denormalize(bap, lf0) dec_ap = vocoder.decode_aperiodicity(ap, hp.sample_rate, fft_size=(sp.shape[1] - 1) * 2) print(f0.dtype, sp.dtype, dec_ap.dtype, flush=True) wav = vocoder.synthesize(f0, sp, dec_ap, hp.sample_rate) return wav
def load_timbre(path, m_type, mx, mn): load_t = np.load(path).astype(np.double) load_t = (load_t + 0.5) * (mx - mn) + mn decode_sp = decode_harmonic(load_t, fft_size) if m_type == 1: decode_sp = pw.decode_aperiodicity(load_t, 32000, fft_size) return decode_sp
def _resample_down_aperiodicity(cls, feature, fs, new_fs, new_spectrum_len): feature = np.ascontiguousarray(feature) coded_ap = pyworld.code_aperiodicity(feature, fs) num = cls._get_aperiodicity_num(new_fs) if num < coded_ap.shape[1]: coded_ap = np.ascontiguousarray(coded_ap[:, :num]) return pyworld.decode_aperiodicity(coded_ap, new_fs, (new_spectrum_len - 1) * 2)
def world_speech_synthesis(queue, wav_list, config): """WORLD speech synthesis Args: queue (multiprocessing.Queue): the queue to store the file name of utterance wav_list (list): list of the wav files config (dict): feature extraction config """ # define synthesizer synthesizer = Synthesizer(fs=config['sampling_rate'], fftl=config['fft_size'], shiftms=config['shiftms']) # synthesis for i, wav_name in enumerate(wav_list): logging.info("now processing %s (%d/%d)" % (wav_name, i + 1, len(wav_list))) # load acoustic features feat_name = path_replace(wav_name, config['indir'], config['outdir'], extname=config['feature_format']) if check_hdf5(feat_name, "/world"): h = read_hdf5(feat_name, "/world") else: logging.error("%s is not existed." % (feat_name)) sys.exit(1) if check_hdf5(feat_name, "/f0"): f0 = read_hdf5(feat_name, "/f0") else: uv = h[:, config['uv_dim_idx']].copy(order='C') f0 = h[:, config['f0_dim_idx']].copy(order='C') # cont_f0_lpf fz_idx = np.where(uv == 0.0) f0[fz_idx] = 0.0 if check_hdf5(feat_name, "/ap"): ap = read_hdf5(feat_name, "/ap") else: codeap = h[:, config['ap_dim_start']:config['ap_dim_end']].copy( order='C') ap = pyworld.decode_aperiodicity(codeap, config['sampling_rate'], config['fft_size']) mcep = h[:, config['mcep_dim_start']:config['mcep_dim_end']].copy( order='C') # waveform synthesis wav = synthesizer.synthesis(f0, mcep, ap, alpha=config['mcep_alpha']) wav = np.clip(np.int16(wav), -32768, 32767) # save restored wav restored_name = path_replace(wav_name, "wav", "world", extname="wav") wavfile.write(restored_name, config['sampling_rate'], wav) queue.put('Finish')
def synthesis_from_mcep(f0, mcep, ap, sr, fftsize, shiftms, alpha, rmcep=None): if rmcep is not None: mcep = mod_power(mcep, rmcep, alpha=alpha) if ap.shape[1] < fftsize // 2 + 1: ap = pw.decode_aperiodicity(ap, sr, fftsize) sp = pysptk.mc2sp(mcep, alpha, fftsize) wav = pw.synthesize(f0, sp, ap, sr, frame_period=shiftms) return wav
def gen_wav(self, f0, mgc, bap): spectrogram = pysptk.mc2sp(mgc, fftlen=self.fftlen, alpha=self.alpha) aperiodicity = pyworld.decode_aperiodicity( bap.astype(np.float64), self.sr, self.fftlen) generated_waveform = pyworld.synthesize(f0.flatten().astype(np.float64), spectrogram.astype( np.float64), aperiodicity.astype(np.float64), self.sr, self.frame_period) x2 = generated_waveform / np.max(generated_waveform) * 32768 x2 = x2.astype(np.int16) wavfile.write("gen.wav", self.sr, x2) with open("gen.wav", 'rb') as fd: contents = fd.read() intensity = 10 * np.log10(np.sum(spectrogram**2, axis=1)) return contents, intensity
def _resample_up_aperiodicity(cls, feature, fs, new_fs, new_spectrum_len): feature = np.ascontiguousarray(feature) coded_ap = pyworld.code_aperiodicity(feature, fs) num = cls._get_aperiodicity_num(new_fs) if num > coded_ap.shape[1]: freq_axis = np.hstack((np.arange(coded_ap.shape[1]), new_fs / 2 / cls.FREQUENCY_INTERVAL - 1)) coded_ap = np.hstack((coded_ap, np.full((coded_ap.shape[0], 1), -cls.SAFE_GUARD_MINIMUM))) ap_interp = scipy.interpolate.interp1d(freq_axis, coded_ap, axis=1) coded_ap = np.ascontiguousarray(ap_interp(np.arange(num))) return pyworld.decode_aperiodicity(coded_ap, new_fs, (new_spectrum_len - 1) * 2)
def test_synthesis_from_codeap(self): path = dirpath + '/data/test16000.wav' fs, x = wavfile.read(path) af = FeatureExtractor(analyzer='world', fs=fs, shiftms=5) f0, spc, ap = af.analyze(x) codeap = af.codeap() assert len(np.nonzero(f0)[0]) > 0 assert spc.shape == ap.shape assert pyworld.get_num_aperiodicities(fs) == codeap.shape[-1] ap = pyworld.decode_aperiodicity(codeap, fs, 1024) synth = Synthesizer(fs=fs, fftl=1024, shiftms=5) wav = synth.synthesis_spc(f0, spc, ap) nun_check(wav)
def generate_timbre(m_type, mx, mn, condition, cat_input=None): model_path = 'snapshots/harmonic' if m_type == 1: model_path = 'snapshots/aperiodic' model = load_latest_model_from(m_type, model_path) raw_gen = model.generate(condition, cat_input) sample = (raw_gen.transpose(0, 1).cpu().numpy().astype(np.double) + 0.5) * (mx - mn) + mn decode_sp = None if m_type == 0: decode_sp = decode_harmonic(sample, fft_size) elif m_type == 1: decode_sp = pw.decode_aperiodicity(np.ascontiguousarray(sample), 32000, fft_size) return decode_sp, raw_gen
def gen_waveform(y_predicted, do_postfilter=False): y_predicted = trim_zeros_frames(y_predicted) # Generate parameters and split streams mgc, lf0, vuv, bap = gen_parameters(y_predicted) if do_postfilter: mgc = merlin_post_filter(mgc, alpha) spectrogram = pysptk.mc2sp(mgc, fftlen=fftlen, alpha=alpha) #print(bap.shape) aperiodicity = pyworld.decode_aperiodicity(bap.astype(np.float64), fs, fftlen) f0 = lf0.copy() f0[vuv < 0.5] = 0 f0[np.nonzero(f0)] = np.exp(f0[np.nonzero(f0)]) generated_waveform = pyworld.synthesize(f0.flatten().astype(np.float64), spectrogram.astype(np.float64), aperiodicity.astype(np.float64), fs, frame_period) return generated_waveform
def synthesis(self, f0, mcep, ap, rmcep=None, alpha=0.42): """synthesis generates waveform from F0, mcep, aperiodicity Parameters ---------- f0 : array, shape (`T`, `1`) array of F0 sequence mcep : array, shape (`T`, `dim`) array of mel-cepstrum sequence ap : array, shape (`T`, `fftlen / 2 + 1`) or (`T`, `dim_codeap`) array of aperiodicity or code aperiodicity rmcep : array, optional, shape (`T`, `dim`) array of reference mel-cepstrum sequence Default set to None alpha : int, optional Parameter of all-path transfer function Default set to 0.42 Returns ---------- wav: array, Synethesized waveform """ if rmcep is not None: # power modification mcep = mod_power(mcep, rmcep, alpha=alpha) if ap.shape[1] < self.fftl // 2 + 1: # decode codeap to ap ap = pyworld.decode_aperiodicity(ap, self.fs, self.fftl) # mcep into spc spc = pysptk.mc2sp(mcep, alpha, self.fftl) # generate waveform using world vocoder with f0, spc, ap wav = pyworld.synthesize(f0, spc, ap, self.fs, frame_period=self.shiftms) return wav
def world2wav( clf0, vuv, cap, fs, fbin, mcep=None, sp=None, frame_period=None, mcep_postfilter=False): # setup frame_period = pyworld.default_frame_period \ if frame_period is None else frame_period clf0 = np.ascontiguousarray(clf0.astype('float64')) vuv = np.ascontiguousarray(vuv > 0.5).astype('int') cap = np.ascontiguousarray(cap.astype('float64')) fft_len = fbin * 2 - 2 alpha = pysptk.util.mcepalpha(fs) # clf0 2 f0 f0 = np.squeeze(np.exp(clf0)) * np.squeeze(vuv) # cap 2 ap if cap.ndim != 2: cap = np.expand_dims(cap, 1) ap = pyworld.decode_aperiodicity(cap, fs, fft_len) # mcep 2 sp if sp is None: if mcep is None: raise ValueError else: mcep = np.ascontiguousarray(mcep.astype('float64')) if mcep_postfilter: mcep = merlin_post_filter(mcep, alpha) sp = pysptk.mgc2sp(mcep, alpha=alpha, fftlen=fft_len) sp = np.abs(np.exp(sp)) ** 2 else: sp = np.ascontiguousarray(sp) wave = pyworld.synthesize(f0, sp, ap, fs, frame_period=frame_period) scale = np.abs(wave).max() if scale > 0.99: wave = wave / scale * 0.99 return wave
def synth(f0_dir, ap_dir, mfsc_dir): files = os.listdir(f0_dir) for file in files: # file_name = file.split('.')[0] # file_name = '_'.join(file.split('_')[1:]) # Common file name # Get features for synthesis f0 = np.load(f0_dir + file) mfsc = np.load(mfsc_dir + file) ap = np.load(ap_dir + file) ap = pw.decode_aperiodicity(ap, 32000, 2048) # Convert MFSC to SP sp = mfsc_to_sp(mfsc) # Synthesize the audio _synth(file, f0, ap, sp) print('Finished synthesis')
def run_world_synth(self, synth_output, hparams): """Run the WORLD synthesize method.""" fft_size = pyworld.get_cheaptrick_fft_size(hparams.synth_fs) save_dir = hparams.synth_dir if hparams.synth_dir is not None else hparams.out_dir if hparams.out_dir is not None else os.path.curdir for id_name, output in synth_output.items(): logging.info("Synthesise {} with the WORLD vocoder.".format(id_name)) coded_sp, lf0, vuv, bap = WorldFeatLabelGen.convert_to_world_features(output, contains_deltas=False, num_coded_sps=hparams.num_coded_sps) ln_sp = pysptk.mgc2sp(np.ascontiguousarray(coded_sp, dtype=np.float64), alpha=WorldFeatLabelGen.mgc_alpha, gamma=0.0, fftlen=fft_size) # sp = np.exp(sp.real * 2.0) # sp.imag = sp.imag * 180.0 / np.pi sp = np.exp(ln_sp.real) sp = np.power(sp.real / 32768.0, 2) # sp = np.power(sp.real / 32768.0, 2) # sp = np.exp(np.power(sp.real, 2)) # sp = pyworld.decode_spectral_envelope(np.ascontiguousarray(coded_sp, np.float64), self.synth_fs, fft_size) # Cepstral version. f0 = np.exp(lf0, dtype=np.float64) vuv[f0 < WorldFeatLabelGen.f0_silence_threshold] = 0 # WORLD throws an error for too small f0 values. f0[vuv == 0] = 0.0 ap = pyworld.decode_aperiodicity(np.ascontiguousarray(bap.reshape(-1, 1), np.float64), hparams.synth_fs, fft_size) waveform = pyworld.synthesize(f0, sp, ap, hparams.synth_fs) waveform = waveform.astype(np.float32, copy=False) # Does inplace conversion, if possible. # Always save as wav file first and convert afterwards if necessary. wav_file_path = os.path.join(save_dir, "{}{}{}.wav".format(os.path.basename(id_name), "_" + hparams.model_name if hparams.model_name is not None else "", hparams.synth_file_suffix, "_WORLD", ".wav")) makedirs_safe(hparams.synth_dir) soundfile.write(wav_file_path, waveform, hparams.synth_fs) # Use PyDub for special audio formats. if hparams.synth_ext.lower() != 'wav': as_wave = pydub.AudioSegment.from_wav(wav_file_path) as_wave.export(os.path.join(hparams.synth_dir, id_name + "." + hparams.synth_ext), format=hparams.synth_ext) os.remove(wav_file_path)
def decode_envelopes(spectral_coded, aperiodic_coded, sample_rate, vocal_name): # Reverse MFSC to MFCC mirror, remove mirror back. Reduce the scaling of DC and Nynquist frequencies # Convert back the MFCC to frequency fft_size = params.fft_size order = params.mcep_order coding_const = params.coding_const gamma = params.mcep_gamma alpha = params.mcep_alpha directory = params.training_dir + '/' + vocal_name + '/' [min_spec, max_spec, min_ap, max_ap] = np.load(directory + "min_max.npy", allow_pickle=True) spectral_coded = (spectral_coded + coding_const) * (max_spec - min_spec) + min_spec mirror = np.fft.irfft(spectral_coded) half_mirror = mirror[:, :order] half_mirror[:, 0] /= 2 half_mirror[:, -1] /= 2 spectral_env = np.exp( np.apply_along_axis(pysptk.mgc2sp, 1, half_mirror, alpha, gamma, fftlen=fft_size).real) aperiodic_coded = (aperiodic_coded + coding_const) * (max_ap - min_ap) + min_ap aperiodic_coded = np.array(aperiodic_coded, order='C') aperiodic_env = pyworld.decode_aperiodicity(aperiodic_coded, sample_rate, fft_size) return spectral_env, aperiodic_env
def bap2ap(bap, fs, fftlen): ap = pw.decode_aperiodicity(bap, fs, fftlen) return ap
def main(args): if os.path.isdir('test'): rmtree('test') os.mkdir('test') #x, fs = sf.read('utterance/vaiueo2d.wav') x, fs = sf.read('utterance/p226_002.wav') # x, fs = librosa.load('utterance/vaiueo2d.wav', dtype=np.float64) # 1. A convient way f0, sp, ap = pw.wav2world(x, fs) # use default options y = pw.synthesize(f0, sp, ap, fs, pw.default_frame_period) # 2. Step by step # 2-1 Without F0 refinement _f0, t = pw.dio(x, fs, f0_floor=50.0, f0_ceil=600.0, channels_in_octave=2, frame_period=args.frame_period, speed=args.speed) _sp = pw.cheaptrick(x, _f0, t, fs) _ap = pw.d4c(x, _f0, t, fs) _y = pw.synthesize(_f0, _sp, _ap, fs, args.frame_period) # librosa.output.write_wav('test/y_without_f0_refinement.wav', _y, fs) sf.write('test/y_without_f0_refinement.wav', _y, fs) # 2-2 DIO with F0 refinement (using Stonemask) f0 = pw.stonemask(x, _f0, t, fs) sp = pw.cheaptrick(x, f0, t, fs) ap = pw.d4c(x, f0, t, fs) y = pw.synthesize(f0, sp, ap, fs, args.frame_period) # librosa.output.write_wav('test/y_with_f0_refinement.wav', y, fs) sf.write('test/y_with_f0_refinement.wav', y, fs) # 2-3 Harvest with F0 refinement (using Stonemask) _f0_h, t_h = pw.harvest(x, fs) f0_h = pw.stonemask(x, _f0_h, t_h, fs) sp_h = pw.cheaptrick(x, f0_h, t_h, fs) ap_h = pw.d4c(x, f0_h, t_h, fs) y_h = pw.synthesize(f0_h, sp_h, ap_h, fs, pw.default_frame_period) # librosa.output.write_wav('test/y_harvest_with_f0_refinement.wav', y_h, fs) sf.write('test/y_harvest_with_f0_refinement.wav', y_h, fs) # 2-4 DIO with F0 refinement (using Stonemask). Code and restore sp, ap. code_sp = pw.code_spectral_envelope(sp, fs, 80) code_ap = pw.code_aperiodicity(ap, fs) fft_size = (sp.shape[1] - 1) * 2 rest_sp = pw.decode_spectral_envelope(code_sp, fs, fft_size) rest_ap = pw.decode_aperiodicity(code_ap, fs, fft_size) y_r = pw.synthesize(f0, rest_sp, rest_ap, fs, args.frame_period) sf.write('test/y_with_f0_refinement_code_and_restore.wav', y_r, fs) print("fft size: {:d}".format(fft_size)) print("coded sp shape: ({:d}, {:d})".format(code_sp.shape[0], code_sp.shape[1])) print("coded ap shape: ({:d}, {:d})".format(code_ap.shape[0], code_ap.shape[1])) # 2-5 DIO with F0 refinement (using Stonemask). Code and restore sp, ap. frame_shift: 12.5 ms, frame_length: 50.0 ms f0_xx, t_xx = pw.dio(x, fs, f0_floor=50.0, f0_ceil=600.0, channels_in_octave=2, frame_period=12.5, speed=args.speed) f0_xx = pw.stonemask(x, f0_xx, t_xx, fs) sp_xx = pw.cheaptrick(x, f0_xx, t_xx, fs) ap_xx = pw.d4c(x, f0_xx, t_xx, fs) code_sp_xx = pw.code_spectral_envelope(sp_xx, fs, 80) code_ap_xx = pw.code_aperiodicity(ap_xx, fs) fft_size = (sp_xx.shape[1] - 1) * 2 rest_sp_xx = pw.decode_spectral_envelope(code_sp_xx, fs, fft_size) rest_ap_xx = pw.decode_aperiodicity(code_ap_xx, fs, fft_size) y_r_xx = pw.synthesize(f0_xx, rest_sp_xx, rest_ap_xx, fs, 12.5) sf.write( 'test/y_with_f0_refinement_code_and_restore_frame_period_12.5.wav', y_r_xx, fs) print("coded sp_xx shape: ({:d}, {:d})".format(code_sp_xx.shape[0], code_sp_xx.shape[1])) print("coded ap_xx shape: ({:d}, {:d})".format(code_ap_xx.shape[0], code_ap_xx.shape[1])) # Comparison savefig('test/wavform.png', [x, _y, y, y_h, y_r, y_r_xx]) savefig('test/sp.png', [_sp, sp, sp_h, rest_sp, rest_sp_xx]) savefig('test/ap.png', [_ap, ap, ap_h, rest_ap, rest_ap_xx], log=False) savefig('test/f0.png', [_f0, f0, f0_h, f0_xx]) print('Please check "test" directory for output files')
def decode_ap(ap: numpy.ndarray, sampling_rate: int): return pyworld.decode_aperiodicity( ap.astype(numpy.float64), sampling_rate, pyworld.get_cheaptrick_fft_size(sampling_rate), )
end = timer() print('Feature Extraction:', end - start, 'seconds') # f0_new from copy import deepcopy # to avoid call by reference!! f0_new = deepcopy(f0) # 1-58 59-138 139-198 // 269-360 // 429-522 f0_new[1:198] = np.flip(f0_new[1:198], 0) # reverse pitch f0_new[269:360] = f0_new[269:360] + 62 #E(330hz) -> G (392hz) f0_new[429:522] = f0_new[429:522] + 193 #E(330hz) -> G(523hz) #%% reduce dimension of spectral envelope and aperiodicity. enc_sp = pw.code_spectral_envelope(sp, fs, number_of_dimensions=32) dec_sp = pw.decode_spectral_envelope(enc_sp, fs, fft_size=(sp.shape[1] - 1) * 2) enc_ap = pw.code_aperiodicity(ap, fs) dec_ap = pw.decode_aperiodicity(enc_ap, fs, fft_size=(ap.shape[1] - 1) * 2) #%% y = pw.synthesize(f0, sp, ap, fs) librosa.output.write_wav('y_EyesNose_short_resynthesis.wav', y, fs) #%% y = pw.synthesize(f0, dec_sp, ap, fs) librosa.output.write_wav('y_EyesNose_short_resynthesis_sp_decode_32.wav', y, fs) #%% synthesis using new f0 y = pw.synthesize(f0_new, sp, ap, fs) librosa.output.write_wav('y_EyesNose_short_new_F0_sp_decode_32.wav', y, fs)
# Change following 3 lines to specify directories fs = 32000 fft_size = 2048 f0_dir = './f0' ap_dir = './ap' mfsc_dir = './mfsc' f0 = np.load( 'C:/Users/Murali/EE599/project/NIT/NIT/f0ref/nitech_jp_song070_f001_016.npy' ) ap = np.load( 'C:/Users/Murali/EE599/project/NIT/NIT/ap/nitech_jp_song070_f001_016.npy' ) # mfsc_og = np.load('C:/Users/Murali/EE599/project/NIT/NIT/mfsc/nitech_jp_song070_f001_016.npy') ap = pw.decode_aperiodicity(ap, fs, fft_size) # ap = ap[0:1300] # f0 = f0[0:1300] # mfsc_og = mfsc_og[0:620] # np.save("mfsc016_.npy", mfsc_og) mfsc = np.load( 'C:/Users/Murali/2018_synth_sing/tensorflow-wavenet/generated_016_new.npy' ) mfsc = mfsc[20:] # pos_idx = np.where(mfsc > 0) # mfsc[pos_idx] = 0 # mfsc = (-1) * np.abs(mfsc) # sp_og = mfsc_to_sp(mfsc_og) sp = mfsc_to_sp(mfsc)
def decode_RNN(feat_list, gpu, cvlist=None, mcd_cvlist_src=None, mcdstd_cvlist_src=None, mcdpow_cvlist_src=None, mcdpowstd_cvlist_src=None,\ mcd_cvlist_cyc=None, mcdstd_cvlist_cyc=None, mcdpow_cvlist_cyc=None, mcdpowstd_cvlist_cyc=None,\ mcd_cvlist=None, mcdstd_cvlist=None, mcdpow_cvlist=None, mcdpowstd_cvlist=None, \ lat_dist_rmse_list=None, lat_dist_cosim_list=None): with torch.cuda.device(gpu): # define model and load parameters with torch.no_grad(): model_encoder = GRU_VAE_ENCODER( in_dim=config.mcep_dim+config.excit_dim, n_spk=n_spk, lat_dim=config.lat_dim, hidden_layers=config.hidden_layers_enc, hidden_units=config.hidden_units_enc, kernel_size=config.kernel_size_enc, dilation_size=config.dilation_size_enc, causal_conv=config.causal_conv_enc, bi=False, ar=False, pad_first=True, right_size=config.right_size_enc) logging.info(model_encoder) model_decoder = GRU_SPEC_DECODER( feat_dim=config.lat_dim, out_dim=config.mcep_dim, n_spk=n_spk, hidden_layers=config.hidden_layers_dec, hidden_units=config.hidden_units_dec, kernel_size=config.kernel_size_dec, dilation_size=config.dilation_size_dec, causal_conv=config.causal_conv_dec, bi=False, ar=False, pad_first=True, right_size=config.right_size_dec) logging.info(model_decoder) model_post = GRU_POST_NET( spec_dim=config.mcep_dim, excit_dim=2, n_spk=n_spk, hidden_layers=config.hidden_layers_post, hidden_units=config.hidden_units_post, kernel_size=config.kernel_size_post, dilation_size=config.dilation_size_post, causal_conv=config.causal_conv_post, pad_first=True, right_size=config.right_size_post) #excit_dim=config.excit_dim, #excit_dim=None, logging.info(model_post) model_encoder.load_state_dict(torch.load(args.model)["model_encoder"]) model_decoder.load_state_dict(torch.load(args.model)["model_decoder"]) model_post.load_state_dict(torch.load(args.model)["model_post"]) model_encoder.remove_weight_norm() model_decoder.remove_weight_norm() model_post.remove_weight_norm() model_encoder.cuda() model_decoder.cuda() model_post.cuda() model_encoder.eval() model_decoder.eval() model_post.eval() for param in model_encoder.parameters(): param.requires_grad = False for param in model_decoder.parameters(): param.requires_grad = False for param in model_post.parameters(): param.requires_grad = False count = 0 pad_left = (model_encoder.pad_left + model_decoder.pad_left + model_post.pad_left)*2 pad_right = (model_encoder.pad_right + model_decoder.pad_right + model_post.pad_right)*2 outpad_lefts = [None]*5 outpad_rights = [None]*5 outpad_lefts[0] = pad_left-model_encoder.pad_left outpad_rights[0] = pad_right-model_encoder.pad_right outpad_lefts[1] = outpad_lefts[0]-model_decoder.pad_left outpad_rights[1] = outpad_rights[0]-model_decoder.pad_right outpad_lefts[2] = outpad_lefts[1]-model_post.pad_left outpad_rights[2] = outpad_rights[1]-model_post.pad_right outpad_lefts[3] = outpad_lefts[2]-model_encoder.pad_left outpad_rights[3] = outpad_rights[2]-model_encoder.pad_right outpad_lefts[4] = outpad_lefts[3]-model_decoder.pad_left outpad_rights[4] = outpad_rights[3]-model_decoder.pad_right logging.info(f'{pad_left} {pad_right}') logging.info(outpad_lefts) logging.info(outpad_rights) for feat_file in feat_list: # convert mcep spk_src = os.path.basename(os.path.dirname(feat_file)) src_idx = spk_list.index(spk_src) logging.info('%s --> %s' % (spk_src, args.spk_trg)) file_trg = os.path.join(os.path.dirname(os.path.dirname(feat_file)), args.spk_trg, os.path.basename(feat_file)) trg_exist = False if os.path.exists(file_trg): logging.info('exist: %s' % (file_trg)) feat_trg = read_hdf5(file_trg, config.string_path) mcep_trg = feat_trg[:,-config.mcep_dim:] logging.info(mcep_trg.shape) trg_exist = True feat_org = read_hdf5(feat_file, config.string_path) mcep = np.array(feat_org[:,-config.mcep_dim:]) codeap = np.array(np.rint(feat_org[:,2:3])*(-np.exp(feat_org[:,3:config.excit_dim]))) sp = np.array(ps.mc2sp(mcep, args.mcep_alpha, args.fftl)) ap = pw.decode_aperiodicity(codeap, args.fs, args.fftl) feat_cvf0_lin = np.expand_dims(convert_f0(np.exp(feat_org[:,1]), src_f0_mean, src_f0_std, trg_f0_mean, trg_f0_std), axis=-1) feat_cv = np.c_[feat_org[:,:1], np.log(feat_cvf0_lin), feat_org[:,2:config.excit_dim]] logging.info("generate") with torch.no_grad(): feat = F.pad(torch.FloatTensor(feat_org).cuda().unsqueeze(0).transpose(1,2), (pad_left,pad_right), "replicate").transpose(1,2) feat_excit = torch.FloatTensor(feat_org[:,:config.excit_dim]).cuda().unsqueeze(0) feat_excit_cv = torch.FloatTensor(feat_cv).cuda().unsqueeze(0) spk_logits, _, lat_src, _ = model_encoder(feat, sampling=False) logging.info('input spkpost') if outpad_rights[0] > 0: logging.info(torch.mean(F.softmax(spk_logits[:,outpad_lefts[0]:-outpad_rights[0]], dim=-1), 1)) else: logging.info(torch.mean(F.softmax(spk_logits[:,outpad_lefts[0]:], dim=-1), 1)) if trg_exist: spk_trg_logits, _, lat_trg, _ = model_encoder(F.pad(torch.FloatTensor(feat_trg).cuda().unsqueeze(0).transpose(1,2), \ (model_encoder.pad_left,model_encoder.pad_right), "replicate").transpose(1,2), sampling=False) logging.info('target spkpost') logging.info(torch.mean(F.softmax(spk_trg_logits, dim=-1), 1)) cvmcep_src, _ = model_decoder((torch.ones((1, lat_src.shape[1]))*src_idx).cuda().long(), lat_src) cvmcep_src_post, _ = model_post(cvmcep_src, y=(torch.ones((1, cvmcep_src.shape[1]))*src_idx).cuda().long(), e=F.pad(feat_excit[:,:,:2].transpose(1,2), (outpad_lefts[1],outpad_rights[1]), "replicate").transpose(1,2)) #e=F.pad(feat_excit.transpose(1,2), (outpad_lefts[1],outpad_rights[1]), "replicate").transpose(1,2)) if model_post.pad_right > 0: spk_logits, _, lat_rec, _ = model_encoder(torch.cat((F.pad(feat_excit.transpose(1,2), \ (outpad_lefts[2],outpad_rights[2]), "replicate").transpose(1,2), cvmcep_src[:,model_post.pad_left:-model_post.pad_right]), 2), sampling=False) else: spk_logits, _, lat_rec, _ = model_encoder(torch.cat((F.pad(feat_excit.transpose(1,2), \ (outpad_lefts[2],outpad_rights[2]), "replicate").transpose(1,2), cvmcep_src[:,model_post.pad_left:]), 2), sampling=False) logging.info('rec spkpost') if outpad_rights[3] > 0: logging.info(torch.mean(F.softmax(spk_logits[:,outpad_lefts[3]:-outpad_rights[3]], dim=-1), 1)) else: logging.info(torch.mean(F.softmax(spk_logits[:,outpad_lefts[3]:], dim=-1), 1)) cvmcep, _ = model_decoder((torch.ones((1, lat_src.shape[1]))*trg_idx).cuda().long(), lat_src) cvmcep_post, _ = model_post(cvmcep, y=(torch.ones((1, cvmcep.shape[1]))*trg_idx).cuda().long(), e=F.pad(feat_excit_cv[:,:,:2].transpose(1,2), (outpad_lefts[1],outpad_rights[1]), "replicate").transpose(1,2)) #e=F.pad(feat_excit_cv.transpose(1,2), (outpad_lefts[1],outpad_rights[1]), "replicate").transpose(1,2)) if model_post.pad_right > 0: spk_logits, _, lat_cv, _ = model_encoder(torch.cat((F.pad(feat_excit_cv.transpose(1,2), \ (outpad_lefts[2],outpad_rights[2]), "replicate").transpose(1,2), cvmcep[:,model_post.pad_left:-model_post.pad_right]), 2), sampling=False) else: spk_logits, _, lat_cv, _ = model_encoder(torch.cat((F.pad(feat_excit_cv.transpose(1,2), \ (outpad_lefts[2],outpad_rights[2]), "replicate").transpose(1,2), cvmcep[:,model_post.pad_left:]), 2), sampling=False) logging.info('cv spkpost') if outpad_rights[3] > 0: logging.info(torch.mean(F.softmax(spk_logits[:,outpad_lefts[3]:-outpad_rights[3]], dim=-1), 1)) else: logging.info(torch.mean(F.softmax(spk_logits[:,outpad_lefts[3]:], dim=-1), 1)) cvmcep_cyc, _ = model_decoder((torch.ones((1, lat_cv.shape[1]))*src_idx).cuda().long(), lat_cv) cvmcep_cyc_post, _ = model_post(cvmcep_cyc, y=(torch.ones((1, cvmcep_cyc.shape[1]))*src_idx).cuda().long(), e=F.pad(feat_excit[:,:,:2].transpose(1,2), (outpad_lefts[4],outpad_rights[4]), "replicate").transpose(1,2)) #e=F.pad(feat_excit.transpose(1,2), (outpad_lefts[4],outpad_rights[4]), "replicate").transpose(1,2)) if outpad_rights[2] > 0: cvmcep_src = np.array(cvmcep_src_post[0,outpad_lefts[2]:-outpad_rights[2]].cpu().data.numpy(), dtype=np.float64) cvmcep = np.array(cvmcep_post[0,outpad_lefts[2]:-outpad_rights[2]].cpu().data.numpy(), dtype=np.float64) else: cvmcep_src = np.array(cvmcep_src_post[0,outpad_lefts[2]:].cpu().data.numpy(), dtype=np.float64) cvmcep = np.array(cvmcep_post[0,outpad_lefts[2]:].cpu().data.numpy(), dtype=np.float64) cvmcep_cyc = np.array(cvmcep_cyc_post[0].cpu().data.numpy(), dtype=np.float64) if trg_exist: if outpad_rights[0] > 0: lat_src = lat_src[:,outpad_lefts[0]:-outpad_rights[0]] else: lat_src = lat_src[:,outpad_lefts[0]:] logging.info(cvmcep_src.shape) logging.info(cvmcep.shape) logging.info(cvmcep_cyc.shape) if trg_exist: logging.info(lat_src.shape) logging.info(lat_trg.shape) cvlist.append(np.var(cvmcep[:,1:], axis=0)) logging.info("cvf0lin") f0_range = read_hdf5(feat_file, "/f0_range") cvf0_range_lin = convert_f0(f0_range, src_f0_mean, src_f0_std, trg_f0_mean, trg_f0_std) uv_range_lin, cont_f0_range_lin = convert_continuos_f0(np.array(cvf0_range_lin)) unique, counts = np.unique(uv_range_lin, return_counts=True) logging.info(dict(zip(unique, counts))) cont_f0_lpf_range_lin = \ low_pass_filter(cont_f0_range_lin, int(1.0 / (args.shiftms * 0.001)), cutoff=20) uv_range_lin = np.expand_dims(uv_range_lin, axis=-1) cont_f0_lpf_range_lin = np.expand_dims(cont_f0_lpf_range_lin, axis=-1) # plain converted feat for neural vocoder feat_cv = np.c_[uv_range_lin, np.log(cont_f0_lpf_range_lin), feat_cv[:,2:config.excit_dim], cvmcep] logging.info(feat_cv.shape) logging.info("mcd acc") spcidx = np.array(read_hdf5(feat_file, "/spcidx_range")[0]) _, mcdpow_arr = dtw.calc_mcd(np.array(mcep[spcidx], dtype=np.float64), np.array(cvmcep_src[spcidx], dtype=np.float64)) _, mcd_arr = dtw.calc_mcd(np.array(mcep[spcidx,1:], dtype=np.float64), np.array(cvmcep_src[spcidx,1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow_src_cv: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd_src_cv: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpow_cvlist_src.append(mcdpow_mean) mcdpowstd_cvlist_src.append(mcdpow_std) mcd_cvlist_src.append(mcd_mean) mcdstd_cvlist_src.append(mcd_std) if trg_exist: spcidx_trg = np.array(read_hdf5(file_trg, "/spcidx_range")[0]) _, _, _, mcdpow_arr = dtw.dtw_org_to_trg(np.array(cvmcep[spcidx], \ dtype=np.float64), np.array(mcep_trg[spcidx_trg], dtype=np.float64)) _, _, _, mcd_arr = dtw.dtw_org_to_trg(np.array(cvmcep[spcidx,1:], \ dtype=np.float64), np.array(mcep_trg[spcidx_trg,1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow_trg: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd_trg: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpow_cvlist.append(mcdpow_mean) mcdpowstd_cvlist.append(mcdpow_std) mcd_cvlist.append(mcd_mean) mcdstd_cvlist.append(mcd_std) spcidx_src = torch.LongTensor(spcidx).cuda() spcidx_trg = torch.LongTensor(spcidx_trg).cuda() trj_lat_src = np.array(torch.index_select(lat_src[0],0,spcidx_src).cpu().data.numpy(), dtype=np.float64) trj_lat_trg = np.array(torch.index_select(lat_trg[0],0,spcidx_trg).cpu().data.numpy(), dtype=np.float64) aligned_lat_srctrg, _, _, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg) lat_dist_srctrg = np.mean(np.sqrt(np.mean((aligned_lat_srctrg-trj_lat_trg)**2, axis=0))) _, _, lat_cdist_srctrg, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src, mcd=0) aligned_lat_trgsrc, _, _, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src) lat_dist_trgsrc = np.mean(np.sqrt(np.mean((aligned_lat_trgsrc-trj_lat_src)**2, axis=0))) _, _, lat_cdist_trgsrc, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg, mcd=0) logging.info("%lf %lf %lf %lf" % (lat_dist_srctrg, lat_cdist_srctrg, lat_dist_trgsrc, lat_cdist_trgsrc)) lat_dist_rmse = (lat_dist_srctrg+lat_dist_trgsrc)/2 lat_dist_cosim = (lat_cdist_srctrg+lat_cdist_trgsrc)/2 lat_dist_rmse_list.append(lat_dist_rmse) lat_dist_cosim_list.append(lat_dist_cosim) logging.info("lat_dist: %.6f %.6f" % (lat_dist_rmse, lat_dist_cosim)) _, mcdpow_arr = dtw.calc_mcd(np.array(mcep[spcidx], dtype=np.float64), np.array(cvmcep_cyc[spcidx], dtype=np.float64)) _, mcd_arr = dtw.calc_mcd(np.array(mcep[spcidx,1:], dtype=np.float64), np.array(cvmcep_cyc[spcidx,1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow_cyc_cv: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd_cyc_cv: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpow_cvlist_cyc.append(mcdpow_mean) mcdpowstd_cvlist_cyc.append(mcdpow_std) mcd_cvlist_cyc.append(mcd_mean) mcdstd_cvlist_cyc.append(mcd_std) logging.info("synth anasyn") wav = np.clip(pw.synthesize(f0_range, sp, ap, args.fs, frame_period=args.shiftms), -1, 1) wavpath = os.path.join(args.outdir,os.path.basename(feat_file).replace(".h5","_anasyn.wav")) sf.write(wavpath, wav, args.fs, 'PCM_16') logging.info(wavpath) logging.info("synth voco rec") cvsp_src = ps.mc2sp(cvmcep_src, args.mcep_alpha, args.fftl) logging.info(cvsp_src.shape) wav = np.clip(pw.synthesize(f0_range, cvsp_src, ap, args.fs, frame_period=args.shiftms), -1, 1) wavpath = os.path.join(args.outdir, os.path.basename(feat_file).replace(".h5", "_rec.wav")) sf.write(wavpath, wav, args.fs, 'PCM_16') logging.info(wavpath) logging.info("synth voco cv") cvsp = ps.mc2sp(cvmcep, args.mcep_alpha, args.fftl) logging.info(cvsp.shape) wav = np.clip(pw.synthesize(cvf0_range_lin, cvsp, ap, args.fs, frame_period=args.shiftms), -1, 1) wavpath = os.path.join(args.outdir, os.path.basename(feat_file).replace(".h5", "_cv.wav")) sf.write(wavpath, wav, args.fs, 'PCM_16') logging.info(wavpath) logging.info("synth voco cv GV") datamean = np.mean(cvmcep[:,1:], axis=0) cvmcep_gv = np.c_[cvmcep[:,0], args.gv_coeff*(np.sqrt(gv_mean_trg/cvgv_mean) * \ (cvmcep[:,1:]-datamean) + datamean) + (1-args.gv_coeff)*cvmcep[:,1:]] cvmcep_gv = mod_pow(cvmcep_gv, cvmcep, alpha=args.mcep_alpha, irlen=IRLEN) cvsp_gv = ps.mc2sp(cvmcep_gv, args.mcep_alpha, args.fftl) logging.info(cvsp_gv.shape) wav = np.clip(pw.synthesize(cvf0_range_lin, cvsp_gv, ap, args.fs, frame_period=args.shiftms), -1, 1) wavpath = os.path.join(args.outdir, os.path.basename(feat_file).replace(".h5", "_cvGV.wav")) sf.write(wavpath, wav, args.fs, 'PCM_16') logging.info(wavpath) #logging.info("synth diffGV") #shiftl = int(args.fs/1000*args.shiftms) #mc_cv_diff = cvmcep_gv-mcep #b = np.apply_along_axis(ps.mc2b, 1, mc_cv_diff, args.mcep_alpha) #logging.info(b.shape) #assert np.isfinite(b).all #mlsa_fil = ps.synthesis.Synthesizer(MLSADF(mcep_dim, alpha=args.mcep_alpha), shiftl) #x, fs_ = sf.read(os.path.join(os.path.dirname(feat_file).replace("hdf5", "wav_filtered"), os.path.basename(feat_file).replace(".h5", ".wav"))) #assert(fs_ == args.fs) #wav = mlsa_fil.synthesis(x, b) #wav = np.clip(wav, -1, 1) #wavpath = os.path.join(args.outdir, os.path.basename(feat_file).replace(".h5", "_DiffGV.wav")) #sf.write(wavpath, wav, args.fs, 'PCM_16') #logging.info(wavpath) #logging.info("synth diffGVF0") #time_axis = read_hdf5(feat_file, "/time_axis") #sp_diff = pw.cheaptrick(wav, f0_range, time_axis, args.fs, fft_size=args.fftl) #logging.info(sp_diff.shape) #ap_diff = pw.d4c(wav, f0_range, time_axis, args.fs, fft_size=args.fftl) #logging.info(ap_diff.shape) #wav = pw.synthesize(cvf0_range_lin, sp_diff, ap_diff, args.fs, frame_period=args.shiftms) #wav = np.clip(wav, -1, 1) #wavpath = os.path.join(args.outdir,os.path.basename(feat_file).replace(".h5", "_DiffGVF0.wav")) #sf.write(wavpath, wav, args.fs, 'PCM_16') #logging.info(wavpath) #logging.info("analysis diffGVF0") #sp_diff_anasyn = pw.cheaptrick(wav, cvf0_range_lin, time_axis, args.fs, fft_size=args.fftl) #logging.info(sp_diff_anasyn.shape) #mc_cv_diff_anasyn = ps.sp2mc(sp_diff_anasyn, mcep_dim, args.mcep_alpha) #ap_diff_anasyn = pw.d4c(wav, cvf0_range_lin, time_axis, args.fs, fft_size=args.fftl) #code_ap_diff_anasyn = pw.code_aperiodicity(ap_diff_anasyn, args.fs) ## convert to continouos codeap with uv #for i in range(code_ap_diff_anasyn.shape[-1]): # logging.info('codeap: %d' % (i+1)) # uv_codeap_i, cont_codeap_i = convert_continuos_codeap(np.array(code_ap_diff_anasyn[:,i])) # cont_codeap_i = np.log(-np.clip(cont_codeap_i, a_min=np.amin(cont_codeap_i), a_max=MAX_CODEAP)) # if i > 0: # cont_codeap = np.c_[cont_codeap, np.expand_dims(cont_codeap_i, axis=-1)] # else: # uv_codeap = np.expand_dims(uv_codeap_i, axis=-1) # cont_codeap = np.expand_dims(cont_codeap_i, axis=-1) # uv_codeap_i = np.expand_dims(uv_codeap_i, axis=-1) # unique, counts = np.unique(uv_codeap_i, return_counts=True) # logging.info(dict(zip(unique, counts))) ## postprocessed converted feat for neural vocoder #feat_diffgv_anasyn = np.c_[feat_cv[:,:2], uv_codeap, cont_codeap, mc_cv_diff_anasyn] #logging.info("write lat") #outTxtDir = os.path.join(args.outdir, os.path.basename(os.path.dirname(feat_file))) #if not os.path.exists(outTxtDir): # os.mkdir(outTxtDir) #outTxt = os.path.join(outTxtDir, os.path.basename(feat_file).replace(".wav", ".txt")) #logging.info(outTxt) #g = open(outTxt, "wt") #idx_frm = 0 #nfrm = trj_lat_src.shape[0] #dim = trj_lat_src.shape[1] #if not args.time_flag: ##if True: # while idx_frm < nfrm: # idx_elmt = 1 # for elmt in trj_lat_src[idx_frm]: # if idx_elmt < dim: # g.write("%lf " % (elmt)) # else: # g.write("%lf\n" % (elmt)) # idx_elmt += 1 # idx_frm += 1 #else: # while idx_frm < nfrm: # idx_elmt = 1 # for elmt in trj_lat_src[idx_frm]: # if idx_elmt < dim: # if idx_elmt > 1: # g.write("%lf " % (elmt)) # else: # g.write("%lf %lf " % (time_axis[idx_frm], elmt)) # else: # g.write("%lf\n" % (elmt)) # idx_elmt += 1 # idx_frm += 1 #g.close() logging.info('write to h5') outh5dir = os.path.join(os.path.dirname(os.path.dirname(feat_file)), spk_src+"-"+args.spk_trg) if not os.path.exists(outh5dir): os.makedirs(outh5dir) feat_file = os.path.join(outh5dir, os.path.basename(feat_file)) # cv write_path = args.string_path logging.info(feat_file + ' ' + write_path) logging.info(feat_cv.shape) write_hdf5(feat_file, write_path, feat_cv) ## diffGVF0 #write_path = args.string_path+"_diffgvf0" #logging.info(feat_file + ' ' + write_path) #logging.info(feat_diffgv_anasyn.shape) #write_hdf5(feat_file, write_path, feat_diffgv_anasyn) count += 1