def test_copy(self):
     g = Graph()
     v1, v2 = g.add_vertices(2)
     g.add_edge((v1, v2), 2)
     g2 = g.copy()
     self.assertEqual(g.num_vertices(), g2.num_vertices())
     self.assertEqual(g.num_edges(), g2.num_edges())
     v1, v2 = list(g2.vertices())
     self.assertEqual(g.edge_type(g.edge(v1, v2)), 2)
Exemple #2
0
 def test_scalar(self):
     g = Graph()
     x = g.add_vertex(VertexType.Z, row = 0, phase = 1 / 2)
     y = g.add_vertex(VertexType.Z, row = 1, phase = 1 / 4)
     g.add_edge(g.edge(x, y), edgetype = EdgeType.SIMPLE)
     
     full_reduce(g)
     val = to_quimb_tensor(g).contract(output_inds = ())
     expected_val = 1 + np.exp(1j * np.pi * 3 / 4)
     self.assertTrue(abs(val - expected_val) < 1e-9)
Exemple #3
0
 def test_id_graph(self):
     g = Graph()
     i = g.add_vertex(0, 0, 0)
     o = g.add_vertex(0, 0, 1)
     g.inputs.append(i)
     g.outputs.append(o)
     g.add_edge((i, o))
     t = tensorfy(g)
     id_array = np.array([[1, 0], [0, 1]])
     self.assertTrue(np.allclose(t, id_array))
     self.assertTrue(compare_tensors(t, id_array))
 def test_remove_isolated_pair_preserves_semantics(self):
     for i, j, k in itertools.product([1, 2], repeat=3):
         for phase1, phase2 in itertools.product([0, 1, 2], [0, 4, 5]):
             with self.subTest(i=i, j=j, k=k, phase1=phase1, phase2=phase2):
                 g = Graph()
                 v = g.add_vertex(i, 0, 0, phase=phase1)
                 w = g.add_vertex(j, 1, 0, phase=phase2)
                 g.add_edge((v, w), k)
                 g2 = g.copy()
                 g2.remove_isolated_vertices()
                 self.assertEqual(g2.num_vertices(), 0)
                 self.assertTrue(compare_tensors(g, g2))
Exemple #5
0
 def test_equality_of_id_zx_graph_to_id(self):
     g = Graph()
     i = g.add_vertex(0, 0, 0)
     o = g.add_vertex(0, 0, 2)
     g.inputs.append(i)
     g.outputs.append(o)
     g2 = g.copy()
     g.add_edge((i, o))
     v = g2.add_vertex(1, 0, 1)
     g2.add_edges([(i, v), (v, o)])
     tensor1 = tensorfy(g)
     tensor2 = tensorfy(g2)
     self.assertTrue(compare_tensors(tensor1, tensor2))
Exemple #6
0
 def test_hadamard_tensor(self):
     g = Graph()
     x = g.add_vertex(VertexType.BOUNDARY)
     y = g.add_vertex(VertexType.BOUNDARY)
     g.add_edge(g.edge(x, y), edgetype = EdgeType.HADAMARD)
     
     tn = to_quimb_tensor(g)
     self.assertTrue(abs((tn & qtn.Tensor(data = [1, 0], inds = ("0",)) 
                         & qtn.Tensor(data = [1 / np.sqrt(2), 1 / np.sqrt(2)], inds = ("1",)))
                     .contract(output_inds = ()) - 1) < 1e-9)
     self.assertTrue(abs((tn & qtn.Tensor(data = [0, 1], inds = ("0",)) 
                         & qtn.Tensor(data = [1 / np.sqrt(2), -1 / np.sqrt(2)], inds = ("1",)))
                     .contract(output_inds = ()) - 1) < 1e-9)
Exemple #7
0
 def test_id_tensor(self):
     g = Graph()
     x = g.add_vertex(VertexType.BOUNDARY)
     y = g.add_vertex(VertexType.BOUNDARY)
     g.add_edge(g.edge(x, y), edgetype = EdgeType.SIMPLE)
     
     tn = to_quimb_tensor(g)
     self.assertTrue((tn & qtn.Tensor(data = [0, 1], inds = ("0",)) 
                         & qtn.Tensor(data = [0, 1], inds = ("1",)))
                     .contract(output_inds = ()) == 1)
     self.assertTrue((tn & qtn.Tensor(data = [1, 0], inds = ("0",)) 
                         & qtn.Tensor(data = [1, 0], inds = ("1",)))
                     .contract(output_inds = ()) == 1)
 def test_supplementarity_simp(self):
     g = Graph()
     v = g.add_vertex(1,0,0,phase=Fraction(1,4))
     w = g.add_vertex(1,1,0,phase=Fraction(7,4))
     g.add_edge((v,w),2)
     vs = []
     for i in range(3):
         h = g.add_vertex(1,i,2,Fraction(1))
         vs.append(h)
         g.add_edges([(v,h),(w,h)],2)
     t = g.to_tensor()
     i = supplementarity_simp(g,quiet=True)
     self.assertEqual(i,1)
     self.assertTrue(compare_tensors(t,g.to_tensor()))
 def test_edges(self):
     g = Graph()
     v1, v2, v3 = g.add_vertices(3)
     g.add_edge((v1, v2))
     self.assertEqual(g.num_edges(), 1)
     self.assertTrue(g.connected(v1, v2))
     self.assertTrue(v2 in g.neighbours(v1))
     self.assertEqual(g.vertex_degree(v1), 1)
     self.assertFalse(g.connected(v1, v3))
     e = g.edge(v1, v2)
     self.assertEqual(g.edge_type(e), 1)
     g.set_edge_type(e, 2)
     self.assertEqual(g.edge_type(e), 2)
     g.remove_edge(e)
     self.assertEqual(g.num_edges(), 0)
     self.assertFalse(g.connected(v1, v2))
Exemple #10
0
    def test_xor_tensor(self):
        g = Graph()
        x = g.add_vertex(VertexType.BOUNDARY)
        y = g.add_vertex(VertexType.BOUNDARY)
        v = g.add_vertex(VertexType.Z)
        z = g.add_vertex(VertexType.BOUNDARY)

        g.add_edge(g.edge(x, v), edgetype = EdgeType.HADAMARD)
        g.add_edge(g.edge(y, v), edgetype = EdgeType.HADAMARD)
        g.add_edge(g.edge(v, z), edgetype = EdgeType.HADAMARD)
        tn = to_quimb_tensor(g)
        
        for x in range(2):
            for y in range(2):
                for z in range(2):
                    self.assertTrue(abs((tn &
                            qtn.Tensor(data = [1 - x, x], inds = ("0",)) &
                            qtn.Tensor(data = [1 - y, y], inds = ("1",)) &
                            qtn.Tensor(data = [1 - z, z], inds = ("3",))).contract(output_inds = ()) - 
                            ((x ^ y) == z) / np.sqrt(2)) < 1e-9)
Exemple #11
0
 def test_phases_tensor(self):
     # This diagram represents a 1-input 1-output Z-spider of phase pi/2,
     # but written using two Z-spiders of phases pi/6 and pi/3 that are
     # connected by a simple edge.
     g = Graph()
     x = g.add_vertex(VertexType.BOUNDARY)
     v = g.add_vertex(VertexType.Z, phase = 1. / 6.)
     w = g.add_vertex(VertexType.Z, phase = 1. / 3.)
     y = g.add_vertex(VertexType.BOUNDARY)
     
     g.add_edge(g.edge(x, v), edgetype = EdgeType.SIMPLE)
     g.add_edge(g.edge(v, w), edgetype = EdgeType.SIMPLE)
     g.add_edge(g.edge(w, y), edgetype = EdgeType.SIMPLE)
     tn = to_quimb_tensor(g)
     
     self.assertTrue(abs((tn & qtn.Tensor(data = [1, 0], inds = ("0",)) 
                         & qtn.Tensor(data = [1, 0], inds = ("3",)))
                     .contract(output_inds = ()) - 1) < 1e-9)
     self.assertTrue(abs((tn & qtn.Tensor(data = [0, 1], inds = ("0",)) 
                         & qtn.Tensor(data = [0, 1j], inds = ("3",)))
                     .contract(output_inds = ()) + 1) < 1e-9)