Exemple #1
0
                    [
                        disp_out.reshape(-1, 1),
                        dataset_img['t_disps'],  #t_disps[ntest],
                        dataset_img['gtruths'],  # gtruths[ntest],
                        dbg_cost_nw.reshape(-1, 1),
                        dbg_cost_w.reshape(-1, 1),
                        dbg_d.reshape(-1, 1),
                        dbg_avg_disparity.reshape(-1, 1),
                        dbg_gt_disparity.reshape(-1, 1),
                        dbg_offs.reshape(-1, 1)
                    ],
                    1)

                np.save(result_file, rslt.reshape(HEIGHT, WIDTH, -1))
                rslt = qsf.eval_results(result_file,
                                        ABSOLUTE_DISPARITY,
                                        radius=CLUSTER_RADIUS,
                                        logfile=lf)
                img_gain_test0 = rslt[0][0] / rslt[0][1]
                img_gain_test9 = rslt[9][0] / rslt[9][1]
                if SAVE_TIFFS:
                    qsf.result_npy_to_tiff(result_file,
                                           ABSOLUTE_DISPARITY,
                                           fix_nan=True,
                                           labels=SLICE_LABELS,
                                           logfile=lf)
                """
                Remove dataset_img (if it is not [0] to reduce memory footprint         
                """
                if ntest > 0:
                    image_data[ntest] = None
            if lf:
     qsf.print_time("Running inferred model, stage2", end=" ")
     disp_out,  = sess.run([stage2_out_sparse],
                     feed_dict={ph_ntile_out:         img_ntile })
     qsf.print_time("Done.")
     result_file = files['result'][nimg].replace('.npy','-infer.npy') #not to overwrite training result files that are more complete
     try:
         os.makedirs(os.path.dirname(result_file))
     except:
         pass     
     rslt = np.concatenate(
         [disp_out.reshape(-1,1),
          dataset_img['t_disps'], #t_disps[ntest],
          dataset_img['gtruths'], # gtruths[ntest],
          ],1)
     np.save(result_file,           rslt.reshape(HEIGHT,WIDTH,-1))
     rslt = qsf.eval_results(result_file, ABSOLUTE_DISPARITY, radius=CLUSTER_RADIUS, logfile=lf)  # (re-loads results). Only uses first 4 layers
     if SAVE_TIFFS:
         qsf.result_npy_to_tiff(result_file, ABSOLUTE_DISPARITY, fix_nan = True,labels=SLICE_LABELS, logfile=lf)
     """
     Remove dataset_img (if it is not [0] to reduce memory footprint         
     """
     image_data[nimg] = None
 
 """
     Save MetaGraph to Saved_Model in *.pb (protocol buffer) format to
     be able to use from Java 
 """
 # force clean
 shutil.rmtree(dirs['exportdir'], ignore_errors=True)
 builder = tf.saved_model.builder.SavedModelBuilder(dirs['exportdir'])
 builder.add_meta_graph_and_variables(sess,[tf.saved_model.tag_constants.SERVING],main_op=tf.local_variables_initializer())