def do_plots(root_dir):
    # QG variable plots
    pt_bins = qgc.PT_BINS[:]
    var_list = qgc.COMMON_VARS
    var_prepend = ""

    radius, pus = cu.get_jet_config_from_dirname(root_dir)
    jet_str = "AK%s PF %s" % (radius.upper(), pus.upper())

    for gr_append in ["", "_groomed"][:1]:
        if gr_append == "_groomed":
            print("Doing groomed plots...")
        else:
            print("Doing ungroomed plots...")

        zpj_dirname = "ZPlusJets_QG%s" % (gr_append)
        dj_cen_dirname = "Dijet_QG_central_tighter%s" % (gr_append)
        dj_fwd_dirname = "Dijet_QG_forward_tighter%s" % (gr_append)

        # tfiles = {
        #     "data_run_B": cu.open_root_file(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_RunB.root")),
        #     "data_run_C": cu.open_root_file(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_RunC.root")),
        #     "data_run_D": cu.open_root_file(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_RunD.root")),
        #     "data_run_E": cu.open_root_file(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_RunE.root")),
        #     "data_run_F": cu.open_root_file(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_RunF.root")),
        #     "data_run_G": cu.open_root_file(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_RunG.root")),
        #     "data_run_H": cu.open_root_file(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_RunH.root")),
        # }

        tfiles = {
            "data_run_B":
            cu.open_root_file(
                os.path.join(
                    root_dir,
                    "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_ZeroBias_RunB.root"
                )),
            "data_run_C":
            cu.open_root_file(
                os.path.join(
                    root_dir,
                    "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_ZeroBias_RunC.root"
                )),
            "data_run_D":
            cu.open_root_file(
                os.path.join(
                    root_dir,
                    "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_ZeroBias_RunD.root"
                )),
            "data_run_E":
            cu.open_root_file(
                os.path.join(
                    root_dir,
                    "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_ZeroBias_RunE.root"
                )),
            "data_run_F":
            cu.open_root_file(
                os.path.join(
                    root_dir,
                    "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_ZeroBias_RunF.root"
                )),
            "data_run_G":
            cu.open_root_file(
                os.path.join(
                    root_dir,
                    "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_ZeroBias_RunG.root"
                )),
            "data_run_H":
            cu.open_root_file(
                os.path.join(
                    root_dir,
                    "uhh2.AnalysisModuleRunner.DATA.Data_JetHT_ZeroBias_RunH.root"
                )),
        }

        for ang in var_list[:]:
            print("...Doing", ang.name)
            v = "%s%s_vs_pt" % (var_prepend, ang.var)

            zpj_1d_entries = []
            dijet_cen_1d_entries = []
            dijet_fwd_1d_entries = []

            for pt_ind, (start_val, end_val) in enumerate(pt_bins):
                entries = []
                zpj_entries = []
                dijet_cen_entries = []
                dijet_fwd_entries = []

                # Get all plots
                lw = 2
                msize = 1.1
                data_line_width = lw

                colours = [
                    ROOT.kBlack, ROOT.kRed, ROOT.kBlue, ROOT.kGreen + 2,
                    ROOT.kOrange + 1, ROOT.kAzure + 1, ROOT.kGreen + 3
                ]

                # --------------------------------------------------------------
                # Create reference hists, for Run G+H
                # --------------------------------------------------------------
                ####################
                # DIJET CENTRAL REGION
                ####################
                h2d_qcd_cen_data_g = cu.get_from_tfile(
                    tfiles['data_run_G'], "%s/%s" % (dj_cen_dirname, v))
                h2d_qcd_cen_data_h = cu.get_from_tfile(
                    tfiles['data_run_H'], "%s/%s" % (dj_cen_dirname, v))
                colour = colours[0]
                qcd_cen_kwargs_data = dict(line_color=colour,
                                           line_width=data_line_width,
                                           fill_color=colour,
                                           marker_color=colour,
                                           marker_style=cu.Marker.get(
                                               qgc.QCD_MARKER),
                                           marker_size=0,
                                           label="Runs G+H")
                dijet_cen_data_hist_g = qgp.get_projection_plot(
                    h2d_qcd_cen_data_g, start_val, end_val)
                dijet_cen_data_hist_h = qgp.get_projection_plot(
                    h2d_qcd_cen_data_h, start_val, end_val)
                dijet_cen_data_hist_g.Add(dijet_cen_data_hist_h)
                dijet_cen_entries.append(
                    (dijet_cen_data_hist_g, qcd_cen_kwargs_data))

                ####################
                # DIJET FORWARD REGION
                ####################
                h2d_qcd_fwd_data_g = cu.get_from_tfile(
                    tfiles['data_run_G'], "%s/%s" % (dj_fwd_dirname, v))
                h2d_qcd_fwd_data_h = cu.get_from_tfile(
                    tfiles['data_run_H'], "%s/%s" % (dj_fwd_dirname, v))
                qcd_fwd_kwargs_data = dict(line_color=colour,
                                           line_width=data_line_width,
                                           fill_color=colour,
                                           marker_color=colour,
                                           marker_style=cu.Marker.get(
                                               qgc.QCD_MARKER),
                                           marker_size=0,
                                           label="Runs G+H")
                dijet_fwd_data_hist_g = qgp.get_projection_plot(
                    h2d_qcd_fwd_data_g, start_val, end_val)
                dijet_fwd_data_hist_h = qgp.get_projection_plot(
                    h2d_qcd_fwd_data_h, start_val, end_val)
                dijet_fwd_data_hist_g.Add(dijet_fwd_data_hist_h)
                dijet_fwd_entries.append(
                    (dijet_fwd_data_hist_g, qcd_fwd_kwargs_data))

                # --------------------------------------------------------------
                # FOR SUMMED B-F:
                # --------------------------------------------------------------
                dijet_cen_data_hist_btof, dijet_fwd_data_hist_btof = None, None
                runs = ["B", "C", "D", "E", "F"]
                for run in runs:

                    # DIJET CENTRAL REGION
                    h2d_qcd_cen_data = cu.get_from_tfile(
                        tfiles['data_run_%s' % run],
                        "%s/%s" % (dj_cen_dirname, v))
                    this_dijet_cen_data_hist = qgp.get_projection_plot(
                        h2d_qcd_cen_data, start_val, end_val)
                    if dijet_cen_data_hist_btof is None:
                        dijet_cen_data_hist_btof = this_dijet_cen_data_hist.Clone(
                        )
                    else:
                        dijet_cen_data_hist_btof.Add(this_dijet_cen_data_hist)

                    # DIJET FORWARD REGION
                    h2d_qcd_fwd_data = cu.get_from_tfile(
                        tfiles['data_run_%s' % run], "%s/%s" %
                        (dj_fwd_dirname, v))  # use already merged jetht+zb
                    this_dijet_fwd_data_hist = qgp.get_projection_plot(
                        h2d_qcd_fwd_data, start_val, end_val)
                    if dijet_fwd_data_hist_btof is None:
                        dijet_fwd_data_hist_btof = this_dijet_fwd_data_hist.Clone(
                        )
                    else:
                        dijet_fwd_data_hist_btof.Add(this_dijet_fwd_data_hist)

                colour = colours[1]
                mark = cu.Marker.get('circle')
                btof_cen_kwargs_data = dict(line_color=colour,
                                            line_width=data_line_width,
                                            fill_color=colour,
                                            marker_color=colour,
                                            marker_style=mark,
                                            marker_size=msize,
                                            label="Runs %s-%s" %
                                            (runs[0], runs[-1]),
                                            subplot=dijet_cen_data_hist_g)
                dijet_cen_entries.append(
                    (dijet_cen_data_hist_btof, btof_cen_kwargs_data))

                btof_fwd_kwargs_data = dict(line_color=colour,
                                            line_width=data_line_width,
                                            fill_color=colour,
                                            marker_color=colour,
                                            marker_style=mark,
                                            marker_size=msize,
                                            label="Runs %s-%s" %
                                            (runs[0], runs[-1]),
                                            subplot=dijet_fwd_data_hist_g)
                dijet_fwd_entries.append(
                    (dijet_fwd_data_hist_btof, btof_fwd_kwargs_data))

                # FOR INDIVIDUAL RUN PERIODS:
                # runs = ["B", "C", "D", "E", "F"]
                # for run, colour, mark in zip(runs, colours[1:], cu.Marker().cycle()):

                #     ####################
                #     # DIJET CENTRAL REGION
                #     ####################
                #     # JETHT DATA
                #     h2d_qcd_cen_data = cu.get_from_tfile(tfiles['data_run_%s' % run], "%s/%s" % (dj_cen_dirname, v))
                #     qcd_cen_kwargs_data = dict(line_color=colour, line_width=data_line_width, fill_color=colour,
                #                                marker_color=colour, marker_style=mark, marker_size=msize,
                #                                label="Run %s" % run,
                #                                subplot=dijet_cen_data_hist_g)
                #     dijet_cen_data_hist = qgp.get_projection_plot(h2d_qcd_cen_data, start_val, end_val)
                #     dijet_cen_entries.append((dijet_cen_data_hist, qcd_cen_kwargs_data))

                #     ####################
                #     # DIJET FORWARD REGION
                #     ####################
                #     # JETHT DATA
                #     h2d_qcd_fwd_data = cu.get_from_tfile(tfiles['data_run_%s' % run], "%s/%s" % (dj_fwd_dirname, v))  # use already merged jetht+zb
                #     qcd_fwd_kwargs_data = dict(line_color=colour, line_width=data_line_width, fill_color=colour,
                #                                marker_color=colour, marker_style=mark, marker_size=msize,
                #                                label="Run %s" % run,
                #                                subplot=dijet_fwd_data_hist_g)
                #     dijet_fwd_data_hist = qgp.get_projection_plot(h2d_qcd_fwd_data, start_val, end_val)
                #     dijet_fwd_entries.append((dijet_fwd_data_hist, qcd_fwd_kwargs_data))

                #     ####################
                #     # Z+JETS REGION
                #     ####################

                #     # SINGLE MU DATA
                #     # h2d_dyj_data = cu.get_from_tfile(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.DATA.Data_SingleMu_Run%s.root" % run), "%s/%s" % (zpj_dirname, v))
                #     # dy_kwargs_data = dict(line_color=qgc.colour, line_width=data_line_width, fill_color=qgc.colour,
                #     #                       marker_color=qgc.colour, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=msize,
                #     #                       label="SingleMu Run %s" % run)
                #     # zpj_data_hist = qgp.get_projection_plot(h2d_dyj_data, start_val, end_val)
                #     # zpj_entries.append((zpj_data_hist, dy_kwargs_data))

                #################
                # SETUP PLOTTING
                #################
                rebin = 2
                v_lower = v.lower()
                if "multiplicity" in v_lower:
                    rebin = 2
                elif "flavour" in v_lower or "thrust" in v_lower:
                    rebin = 1
                elif 'ptd' in v_lower:
                    rebin = 2

                xlim = None
                if "width" in v_lower or "ptd" in v_lower:
                    xlim = (0, 1)
                elif "thrust" in v_lower:
                    xlim = (0, 0.5)
                elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                    if end_val <= 150:
                        xlim = (0, 50)
                    else:
                        xlim = (0, 80)

                ylim = None
                if "flavour" in v_lower:
                    ylim = (0, 1)
                # elif "lha" in v_lower:
                # ylim = (0, 5)

                plot_dir = os.path.join(root_dir,
                                        "plots_run_dependent%s" % (gr_append))
                plot_dir = os.path.join(
                    root_dir, "plots_run_dependent_btof%s" % (gr_append))

                subplot_title = "Run * / G+H"
                subplot_title = "B-F / G+H"
                subplot_limits = (0.5, 1.5)

                xlabel = ang.name + " (" + ang.lambda_str + ")"
                if gr_append is not "":
                    xlabel = "Groomed " + ang.name + " (" + ang.lambda_str + ")"

                # dj central only
                dijet_cen_entries = dijet_cen_entries[1:] + dijet_cen_entries[
                    0:1]  # move G+H to last
                qgp.do_comparison_plot(
                    dijet_cen_entries,
                    "%s/ptBinned/%s_pt%dto%d_dijet_central.%s" %
                    (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                    rebin=rebin,
                    title="%d < p_{T}^{jet} < %d GeV\n%s\n%s" %
                    (start_val, end_val, jet_str, qgc.Dijet_CEN_LABEL),
                    xtitle=xlabel,
                    xlim=xlim,
                    ylim=ylim,
                    subplot_type='ratio',
                    subplot_title=subplot_title,
                    subplot_limits=subplot_limits)

                # dj forward only
                dijet_fwd_entries = dijet_fwd_entries[1:] + dijet_fwd_entries[
                    0:1]  # move G+H to last
                qgp.do_comparison_plot(
                    dijet_fwd_entries,
                    "%s/ptBinned/%s_pt%dto%d_dijet_forward.%s" %
                    (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                    rebin=rebin,
                    title="%d < p_{T}^{jet} < %d GeV\n%s\n%s" %
                    (start_val, end_val, jet_str, qgc.Dijet_FWD_LABEL),
                    xtitle=xlabel,
                    xlim=xlim,
                    ylim=ylim,
                    subplot_type='ratio',
                    subplot_title=subplot_title,
                    subplot_limits=subplot_limits)
def do_plots(root_dir):
    # QG variable plots
    pt_bins = qgc.PT_BINS[:]
    var_list = qgc.COMMON_VARS
    var_prepend = ""

    radius, pus = cu.get_jet_config_from_dirname(root_dir)
    jet_str = "AK%s PF %s" % (radius.upper(), pus.upper())

    for gr_append in ["", "_groomed"]:
        if gr_append == "_groomed":
            print("Doing groomed plots...")
        else:
            print("Doing ungroomed plots...")

        if gr_append == "":
            make_1d_plot(root_dir,
                         "Dijet_gen/pt_dijet_ave",
                         jet_str,
                         gen_only=True)
            make_1d_plot(root_dir, "Dijet_tighter/pt_jet", jet_str)

        dj_cen_dirname = "Dijet_QG_central_tighter%s" % (gr_append)
        dj_fwd_dirname = "Dijet_QG_forward_tighter%s" % (gr_append)

        for ang in var_list[:]:
            print("...Doing", ang.name)
            v = "%s%s_vs_pt" % (var_prepend, ang.var)
            dijet_cen_2d_entries = []
            dijet_fwd_2d_entries = []

            dijet_cen_1d_entries = []
            dijet_fwd_1d_entries = []

            for pt_ind, (start_val, end_val) in enumerate(pt_bins):
                entries = []
                dijet_cen_entries = []
                dijet_fwd_entries = []

                # Get all plots
                lw = 2
                msize = 1.1
                data_line_width = lw

                ####################
                # DIJET CENTRAL REGION
                ####################

                # JETHT/ZEROBIAS DATA
                h2d_qcd_cen_data = grab_obj(
                    os.path.join(root_dir, qgc.JETHT_ZB_FILENAME), "%s/%s" %
                    (dj_cen_dirname, v))  # use already merged jetht+zb
                qcd_cen_kwargs_data = dict(line_color=qgc.JETHT_COLOUR,
                                           line_width=data_line_width,
                                           fill_color=qgc.JETHT_COLOUR,
                                           marker_color=qgc.JETHT_COLOUR,
                                           marker_style=cu.Marker.get(
                                               qgc.QCD_MARKER),
                                           marker_size=msize,
                                           label="Data")
                dijet_cen_data_hist = qgp.get_projection_plot(
                    h2d_qcd_cen_data, start_val, end_val)
                entries.append((dijet_cen_data_hist, qcd_cen_kwargs_data))
                dijet_cen_entries.append(
                    (dijet_cen_data_hist, qcd_cen_kwargs_data))
                if pt_ind == 0:
                    dijet_cen_2d_entries.append(
                        (h2d_qcd_cen_data, qcd_cen_kwargs_data))

                # MG+PYTHIA QCD MC
                h2d_qcd_cen_mc = grab_obj(
                    os.path.join(root_dir, qgc.QCD_FILENAME),
                    "%s/%s" % (dj_cen_dirname, v))
                qcd_cen_kwargs_mc = dict(line_color=qgc.QCD_COLOUR,
                                         line_width=lw,
                                         fill_color=qgc.QCD_COLOUR,
                                         marker_color=qgc.QCD_COLOUR,
                                         marker_style=cu.Marker.get(
                                             qgc.QCD_MARKER),
                                         marker_size=0,
                                         label="MG+PY8",
                                         subplot=dijet_cen_data_hist)
                # h2d_qcd_cen_mc.Scale(35860)
                dijet_mgpy_hist = qgp.get_projection_plot(
                    h2d_qcd_cen_mc, start_val, end_val)
                entries.append((dijet_mgpy_hist, qcd_cen_kwargs_mc))
                dijet_cen_entries.append((dijet_mgpy_hist, qcd_cen_kwargs_mc))
                if pt_ind == 0:
                    dijet_cen_2d_entries.append(
                        (h2d_qcd_cen_mc, qcd_cen_kwargs_mc))

                # PYTHIA ONLY
                # col = qgc.QCD_COLOURS[2]
                # h2d_qcd_cen_mc2 = grab_obj(os.path.join(root_dir, qgc.QCD_PYTHIA_ONLY_FILENAME), "%s/%s" % (dj_cen_dirname, v))
                # qcd_cen_kwargs_mc2 = dict(line_color=col, line_width=lw, fill_color=col,
                #                           marker_color=col, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=0,
                #                           label="PY8",
                #                           subplot=dijet_cen_data_hist)
                # # h2d_qcd_cen_mc2.Scale(35860)
                # entries.append((qgp.get_projection_plot(h2d_qcd_cen_mc2, start_val, end_val), qcd_cen_kwargs_mc2))
                # dijet_cen_entries.append((qgp.get_projection_plot(h2d_qcd_cen_mc2, start_val, end_val), qcd_cen_kwargs_mc2))
                # if pt_ind == 0:
                #     dijet_cen_2d_entries.append((h2d_qcd_cen_mc2, qcd_cen_kwargs_mc2))

                # HERWIG++ QCD
                col2 = qgc.QCD_COLOURS[3]
                h2d_qcd_cen_mc3 = grab_obj(
                    os.path.join(root_dir, qgc.QCD_HERWIG_FILENAME),
                    "%s/%s" % (dj_cen_dirname, v))
                qcd_cen_kwargs_mc3 = dict(line_color=col2,
                                          line_width=lw,
                                          fill_color=col2,
                                          marker_color=col2,
                                          marker_style=cu.Marker.get(
                                              qgc.QCD_MARKER),
                                          marker_size=0,
                                          label="H++",
                                          subplot=dijet_cen_data_hist)
                h2d_qcd_cen_mc3.Scale(TOTAL_LUMI)
                dijet_hpp_hist = qgp.get_projection_plot(
                    h2d_qcd_cen_mc3, start_val, end_val)
                entries.append((dijet_hpp_hist, qcd_cen_kwargs_mc3))
                dijet_cen_entries.append((dijet_hpp_hist, qcd_cen_kwargs_mc3))
                if pt_ind == 0:
                    dijet_cen_2d_entries.append(
                        (h2d_qcd_cen_mc3, qcd_cen_kwargs_mc3))

                # HERWIG++ QCD WITH PT REWEIGHT
                col3 = ROOT.kRed
                h2d_qcd_cen_mc4 = grab_obj(
                    os.path.join(
                        root_dir,
                        "uhh2.AnalysisModuleRunner.MC.MC_HERWIG_QCD_PtReweight.root"
                    ), "%s/%s" % (dj_cen_dirname, v))
                qcd_cen_kwargs_mc4 = dict(line_color=col3,
                                          line_width=lw,
                                          fill_color=col3,
                                          marker_color=col3,
                                          marker_style=cu.Marker.get(
                                              qgc.QCD_MARKER),
                                          marker_size=0,
                                          label="H++ (p_{T} reweighted)",
                                          subplot=dijet_cen_data_hist)
                h2d_qcd_cen_mc4.Scale(TOTAL_LUMI)
                dijet_hpp_hist_reweight = qgp.get_projection_plot(
                    h2d_qcd_cen_mc4, start_val, end_val)
                entries.append((dijet_hpp_hist_reweight, qcd_cen_kwargs_mc4))
                dijet_cen_entries.append(
                    (dijet_hpp_hist_reweight, qcd_cen_kwargs_mc4))
                if pt_ind == 0:
                    dijet_cen_2d_entries.append(
                        (h2d_qcd_cen_mc4, qcd_cen_kwargs_mc4))

                ####################
                # DIJET FORWARD REGION
                ####################

                # JETHT/ZEROBIAS DATA
                h2d_qcd_fwd_data = grab_obj(
                    os.path.join(root_dir, qgc.JETHT_ZB_FILENAME), "%s/%s" %
                    (dj_fwd_dirname, v))  # use already merged jetht+zb
                # h2d_zb_data = grab_obj(os.path.join(root_dir, qgc.ZB_FILENAME), "%s/%s" % (dj_cen_dirname, v))
                # h2d_zb_data.Scale(1235009.27580634)
                # h2d_qcd_cen_data.Add(h2d_zb_data)
                qcd_fwd_kwargs_data = dict(line_color=qgc.JETHT_COLOUR,
                                           line_width=data_line_width,
                                           fill_color=qgc.JETHT_COLOUR,
                                           marker_color=qgc.JETHT_COLOUR,
                                           marker_style=cu.Marker.get(
                                               qgc.QCD_MARKER),
                                           marker_size=msize,
                                           label="Data")
                dijet_fwd_data_hist = qgp.get_projection_plot(
                    h2d_qcd_fwd_data, start_val, end_val)
                entries.append((dijet_fwd_data_hist, qcd_fwd_kwargs_data))
                dijet_fwd_entries.append(
                    (dijet_fwd_data_hist, qcd_fwd_kwargs_data))
                if pt_ind == 0:
                    dijet_fwd_2d_entries.append(
                        (h2d_qcd_fwd_data, qcd_fwd_kwargs_data))

                # MG+PYTHIA QCD MC
                h2d_qcd_fwd_mc = grab_obj(
                    os.path.join(root_dir, qgc.QCD_FILENAME),
                    "%s/%s" % (dj_fwd_dirname, v))
                qcd_fwd_kwargs_mc = dict(line_color=qgc.QCD_COLOUR,
                                         line_width=lw,
                                         fill_color=qgc.QCD_COLOUR,
                                         marker_color=qgc.QCD_COLOUR,
                                         marker_style=cu.Marker.get(
                                             qgc.QCD_MARKER),
                                         marker_size=0,
                                         label="MG+PY8",
                                         subplot=dijet_fwd_data_hist)
                # h2d_qcd_fwd_mc.Scale(35860)
                dijet_mgpy_hist = qgp.get_projection_plot(
                    h2d_qcd_fwd_mc, start_val, end_val)
                entries.append((dijet_mgpy_hist, qcd_fwd_kwargs_mc))
                dijet_fwd_entries.append((dijet_mgpy_hist, qcd_fwd_kwargs_mc))
                if pt_ind == 0:
                    dijet_fwd_2d_entries.append(
                        (h2d_qcd_fwd_mc, qcd_fwd_kwargs_mc))

                # PYTHIA ONLY
                # col = qgc.QCD_COLOURS[2]
                # h2d_qcd_fwd_mc2 = grab_obj(os.path.join(root_dir, qgc.QCD_PYTHIA_ONLY_FILENAME), "%s/%s" % (dj_fwd_dirname, v))
                # qcd_fwd_kwargs_mc2 = dict(line_color=col, line_width=lw, fill_color=col,
                #                           marker_color=col, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=0,
                #                           label="PY8",
                #                           subplot=dijet_fwd_data_hist)
                # # h2d_qcd_fwd_mc2.Scale(35860)
                # entries.append((qgp.get_projection_plot(h2d_qcd_fwd_mc2, start_val, end_val), qcd_fwd_kwargs_mc2))
                # dijet_fwd_entries.append((qgp.get_projection_plot(h2d_qcd_fwd_mc2, start_val, end_val), qcd_fwd_kwargs_mc2))
                # if pt_ind == 0:
                #     dijet_fwd_2d_entries.append((h2d_qcd_fwd_mc2, qcd_fwd_kwargs_mc2))

                # HERWIG++ QCD
                col2 = qgc.QCD_COLOURS[3]
                h2d_qcd_fwd_mc3 = grab_obj(
                    os.path.join(root_dir, qgc.QCD_HERWIG_FILENAME),
                    "%s/%s" % (dj_fwd_dirname, v))
                qcd_fwd_kwargs_mc3 = dict(line_color=col2,
                                          line_width=lw,
                                          fill_color=col2,
                                          marker_color=col2,
                                          marker_style=cu.Marker.get(
                                              qgc.QCD_MARKER),
                                          marker_size=0,
                                          label="H++",
                                          subplot=dijet_fwd_data_hist)
                h2d_qcd_fwd_mc3.Scale(TOTAL_LUMI)
                dijet_hpp_hist = qgp.get_projection_plot(
                    h2d_qcd_fwd_mc3, start_val, end_val)
                entries.append((dijet_hpp_hist, qcd_fwd_kwargs_mc3))
                dijet_fwd_entries.append((dijet_hpp_hist, qcd_fwd_kwargs_mc3))
                if pt_ind == 0:
                    dijet_fwd_2d_entries.append(
                        (h2d_qcd_fwd_mc3, qcd_fwd_kwargs_mc3))

                col3 = ROOT.kRed
                h2d_qcd_fwd_mc4 = grab_obj(
                    os.path.join(
                        root_dir,
                        "uhh2.AnalysisModuleRunner.MC.MC_HERWIG_QCD_PtReweight.root"
                    ), "%s/%s" % (dj_fwd_dirname, v))
                qcd_fwd_kwargs_mc4 = dict(line_color=col3,
                                          line_width=lw,
                                          fill_color=col3,
                                          marker_color=col3,
                                          marker_style=cu.Marker.get(
                                              qgc.QCD_MARKER),
                                          marker_size=0,
                                          label="H++ (p_{T} reweighted)",
                                          subplot=dijet_fwd_data_hist)
                h2d_qcd_fwd_mc4.Scale(TOTAL_LUMI)
                dijet_hpp_hist_reweight = qgp.get_projection_plot(
                    h2d_qcd_fwd_mc4, start_val, end_val)
                entries.append((dijet_hpp_hist_reweight, qcd_fwd_kwargs_mc4))
                dijet_fwd_entries.append(
                    (dijet_hpp_hist_reweight, qcd_fwd_kwargs_mc4))
                if pt_ind == 0:
                    dijet_fwd_2d_entries.append(
                        (h2d_qcd_fwd_mc4, qcd_fwd_kwargs_mc4))

                dijet_cen_1d_entries.append(dijet_cen_entries)
                dijet_fwd_1d_entries.append(dijet_fwd_entries)

                #################
                # SETUP PLOTTING
                #################
                rebin = 2
                v_lower = v.lower()
                if "multiplicity" in v_lower:
                    rebin = 2
                elif "flavour" in v_lower or "thrust" in v_lower:
                    rebin = 1
                elif 'ptd' in v_lower:
                    rebin = 2

                xlim = None
                if "width" in v_lower or "ptd" in v_lower:
                    xlim = (0, 1)
                elif "thrust" in v_lower:
                    xlim = (0, 0.5)
                elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                    if end_val <= 150:
                        xlim = (0, 50)
                    else:
                        xlim = (0, 80)

                ylim = None
                if "flavour" in v_lower:
                    ylim = (0, 1)
                # elif "lha" in v_lower:
                # ylim = (0, 5)

                plot_dir = os.path.join(
                    root_dir, "plots_dijet_vs_qcd_mc_vs_data%s_pt_reweight" %
                    (gr_append))

                subplot_title = "MC / Data"
                subplot_limits = (0.5, 1.5)

                xlabel = ang.name + " (" + ang.lambda_str + ")"
                if gr_append is not "":
                    xlabel = "Groomed " + ang.name + " (" + ang.lambda_str + ")"

                # dj+zpj
                # qgp.do_comparison_plot(entries,
                #                        "%s/ptBinned/%s_pt%dto%d.%s" % (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                #                        rebin=rebin,
                #                        title="%d < p_{T}^{jet} < %d GeV\n%s" % (start_val, end_val, jet_str),
                #                        xtitle=ang.name + " (" + ang.lambda_str + ")",
                #                        xlim=xlim, ylim=ylim,
                #                        subplot_type='ratio',
                #                        subplot_title=subplot_title,
                #                        subplot_limits=subplot_limits)

                # dj central only
                qgp.do_comparison_plot(
                    dijet_cen_entries,
                    "%s/ptBinned/%s_pt%dto%d_dijet_central.%s" %
                    (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                    rebin=rebin,
                    title="%d < p_{T}^{jet} < %d GeV\n%s\n%s" %
                    (start_val, end_val, jet_str, qgc.Dijet_CEN_LABEL),
                    xtitle=xlabel,
                    xlim=xlim,
                    ylim=ylim,
                    subplot_type='ratio',
                    subplot_title=subplot_title,
                    subplot_limits=subplot_limits)

                # dj forward only
                qgp.do_comparison_plot(
                    dijet_fwd_entries,
                    "%s/ptBinned/%s_pt%dto%d_dijet_forward.%s" %
                    (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                    rebin=rebin,
                    title="%d < p_{T}^{jet} < %d GeV\n%s\n%s" %
                    (start_val, end_val, jet_str, qgc.Dijet_FWD_LABEL),
                    xtitle=xlabel,
                    xlim=xlim,
                    ylim=ylim,
                    subplot_type='ratio',
                    subplot_title=subplot_title,
                    subplot_limits=subplot_limits)

            # Do overall summary plots across all pt bins
            # ------------------------------------------------------------------
            ylim_mean = None
            if "width" in v_lower or "ptd" in v_lower:
                ylim_mean = (0, 0.4)
            elif "thrust" in v_lower:
                ylim_mean = (0, 0.5)
            elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                ylim_mean = (0, 100)
                ylim_mean = (0, 80)
                if end_val < 150:
                    ylim_mean = (0, 50)
            ylim_mean = None
            ylim_rms = None

            # Setup variable names for MPL
            marker = ""
            if "_" in ang.name or "^" in ang.name:
                marker = "$"
            var_label = marker + ang.name + marker + " ($%s$)" % ang.lambda_str
            if gr_append != "":
                var_label = "Groomed " + marker + ang.name + marker + " ($%s$)" % ang.lambda_str

            qgp.do_mean_rms_summary_plot(
                dijet_cen_1d_entries[:],
                pt_bins[:],
                "%s/ptBinned/%s_box_dijet_cen_mpl.%s" %
                (plot_dir, v, OUTPUT_FMT),
                var_label=var_label,
                xlim=(50, 2000),
                ylim_mean=ylim_mean,
                ylim_rms=ylim_rms,
                region_title="%s jets in dijet (central)" % (jet_str))

            qgp.do_mean_rms_summary_plot(
                dijet_fwd_1d_entries[:],
                pt_bins[:],
                "%s/ptBinned/%s_box_dijet_fwd_mpl.%s" %
                (plot_dir, v, OUTPUT_FMT),
                var_label=var_label,
                xlim=(50, 2000),
                ylim_mean=ylim_mean,
                ylim_rms=ylim_rms,
                region_title="%s jets in dijet (forward)" % (jet_str))
Exemple #3
0
def do_component_plots(mgpythia_dir, pythia_only_dir, plot_dir):

    # Do 2D plots for diff ptMin folders
    jet_flavs = ["", "g", "q"]
    ptmin_vals = [50, 100, 200, 400, 800]
    ptmin_vals = [100, 800]
    # first the pt vs ones:
    plotnames = [
        "genjet_pt_vs_constituent_pt", "genjet_pt_vs_constituent_zi",
        "genjet_pt_vs_constituent_deta", "genjet_pt_vs_constituent_dphi",
        "genjet_pt_vs_constituent_dr"
    ]
    for plotname, ptmin, renorm, logz, flav in product(plotnames, ptmin_vals,
                                                       ['Y', None],
                                                       [True, False],
                                                       jet_flavs):
        rebin = [1, 1]
        ylim = [ptmin, 2000]
        dirname = "Dijet_genjet_ptMin_%d" % ptmin
        this_hist = os.path.join(dirname, flav + plotname)
        log_append = "_logZ" if logz else ""
        qgg.do_2D_plot(
            grab_obj(os.path.join(mgpythia_dir, qgc.QCD_FILENAME), this_hist),
            output_filename=
            "%s/constituent_plots/ptMin_%d/%s_mgpythia_norm%s%s.%s" %
            (plot_dir, ptmin, flav + plotname, renorm, log_append, OUTPUT_FMT),
            renorm_axis=renorm,
            title="MG+Pythia",
            rebin=rebin,
            recolour=True,
            ylim=ylim,
            logz=logz)
        qgg.do_2D_plot(
            grab_obj(os.path.join(pythia_only_dir, qgc.QCD_FILENAME),
                     this_hist),
            output_filename=
            "%s/constituent_plots/ptMin_%d/%s_pythiaOnly_norm%s%s.%s" %
            (plot_dir, ptmin, flav + plotname, renorm, log_append, OUTPUT_FMT),
            renorm_axis=renorm,
            title="Pythia only",
            rebin=rebin,
            recolour=True,
            ylim=ylim,
            logz=logz)

    # Now LHA vs X ones
    plotnames = ["genjet_LHA_vs_zi", "genjet_LHA_vs_thetai"]
    for plotname, ptmin, renorm, logz, flav in product(plotnames, ptmin_vals,
                                                       ['X', 'Y', None],
                                                       [True, False],
                                                       jet_flavs):
        rebin = [4, 4]
        xlim = [0, 0.5] if ("zi" in plotname and renorm != "X") else None
        ylim = None
        dirname = "Dijet_genjet_ptMin_%d" % ptmin
        this_hist = os.path.join(dirname, flav + plotname)
        log_append = "_logZ" if logz else ""
        qgg.do_2D_plot(
            grab_obj(os.path.join(mgpythia_dir, qgc.QCD_FILENAME), this_hist),
            output_filename=
            "%s/constituent_plots/ptMin_%d/%s_mgpythia_norm%s%s.%s" %
            (plot_dir, ptmin, flav + plotname, renorm, log_append, OUTPUT_FMT),
            renorm_axis=renorm,
            title="MG+Pythia, %s-jet, ptMin = %d GeV" % (flav, ptmin),
            rebin=rebin,
            recolour=True,
            xlim=xlim,
            ylim=ylim,
            logz=logz)
        qgg.do_2D_plot(
            grab_obj(os.path.join(pythia_only_dir, qgc.QCD_FILENAME),
                     this_hist),
            output_filename=
            "%s/constituent_plots/ptMin_%d/%s_pythiaOnly_norm%s%s.%s" %
            (plot_dir, ptmin, flav + plotname, renorm, log_append, OUTPUT_FMT),
            renorm_axis=renorm,
            title="Pythia only, %s-jet, ptMin = %d GeV" % (flav, ptmin),
            rebin=rebin,
            recolour=True,
            xlim=xlim,
            ylim=ylim,
            logz=logz)

    def do_2D_plot_with_contours(obj,
                                 contour_obj,
                                 output_filename,
                                 renorm_axis=None,
                                 title=None,
                                 rebin=None,
                                 recolour=True,
                                 xlim=None,
                                 ylim=None,
                                 logx=False,
                                 logy=False,
                                 logz=False):
        """Like normal 2D plotter but contour_obj will be plotted using contours"""
        if rebin:
            obj.Rebin2D(*rebin)
        if renorm_axis:
            obj_renorm = cu.make_normalised_TH2(obj, renorm_axis, recolour)
        else:
            obj_renorm = obj
        if title:
            obj_renorm.SetTitle(title)
        canvas = ROOT.TCanvas(ROOT.TUUID().AsString(), "", 800, 800)
        canvas.SetTicks(1, 1)
        canvas.SetLeftMargin(0.13)
        canvas.SetBottomMargin(0.11)
        if logx:
            canvas.SetLogx(1)
        if logy:
            canvas.SetLogy(1)
        if logz:
            canvas.SetLogz(1)
        obj_renorm.Draw("COLZ")
        if xlim is not None:
            obj_renorm.GetXaxis().SetRangeUser(*xlim)
        if ylim is not None:
            obj_renorm.GetYaxis().SetRangeUser(*ylim)
        obj_renorm.GetYaxis().SetTitleOffset(1.7)
        obj_renorm.GetXaxis().SetTitleOffset(1.2)
        if contour_obj:
            contour_obj.Draw("CONT3 SAME")
        output_filename = os.path.abspath(output_filename)
        odir = os.path.dirname(output_filename)
        if not os.path.isdir(odir):
            os.makedirs(odir)
        canvas.SaveAs(output_filename)

    #  Do 2D plots for premade jet pt cut objs
    jet_pt_vals = [(100, 200), (800, 1000)]
    for (jet_pt_min,
         jet_pt_max), renorm, logz in product(jet_pt_vals, ['X', 'Y',
                                                            None][2:],
                                              [True, False]):
        rebin = [1, 1]
        xlim = [0, 1]
        ylim = [0, 0.05]
        dirname = "Dijet_genjet"
        jet_type = "g"
        plotname = jet_type + "genjet_constituent_zi_vs_constituent_thetai_pt%dto%d" % (
            jet_pt_min, jet_pt_max)
        this_hist = os.path.join(dirname, plotname)
        log_append = "_logZ" if logz else ""
        contour_hist = grab_obj(os.path.join(mgpythia_dir, qgc.QCD_FILENAME),
                                this_hist).Clone("contours")
        for xbin in range(1, contour_hist.GetNbinsX() + 1):
            for ybin in range(1, contour_hist.GetNbinsY() + 1):
                xval = 0.5 * (contour_hist.GetXaxis().GetBinCenter(xbin) +
                              contour_hist.GetXaxis().GetBinCenter(xbin + 1))
                yval = 0.5 * (contour_hist.GetYaxis().GetBinCenter(ybin) +
                              contour_hist.GetYaxis().GetBinCenter(ybin + 1))
                contour_hist.SetBinContent(xbin, ybin,
                                           math.sqrt(xval / 0.4) * yval)
        levels = array('d',
                       [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5])
        contour_hist.SetContour(len(levels), levels)
        contour_hist.SetLineColor(ROOT.kRed)
        do_2D_plot_with_contours(
            grab_obj(os.path.join(mgpythia_dir, qgc.QCD_FILENAME), this_hist),
            contour_hist,
            output_filename="%s/constituent_plots/%s_mgpythia_norm%s%s.%s" %
            (plot_dir, plotname, renorm, log_append, OUTPUT_FMT),
            renorm_axis=renorm,
            title="MG+Pythia, %d < p_{T}^{j} < %d GeV" %
            (jet_pt_min, jet_pt_max),
            rebin=rebin,
            recolour=True,
            xlim=xlim,
            ylim=ylim,
            logz=logz)
        do_2D_plot_with_contours(
            grab_obj(os.path.join(pythia_only_dir, qgc.QCD_FILENAME),
                     this_hist),
            contour_hist,
            output_filename="%s/constituent_plots/%s_pythiaOnly_norm%s%s.%s" %
            (plot_dir, plotname, renorm, log_append, OUTPUT_FMT),
            renorm_axis=renorm,
            title="Pythia only, %d < p_{T}^{j} < %d GeV" %
            (jet_pt_min, jet_pt_max),
            rebin=rebin,
            recolour=True,
            xlim=xlim,
            ylim=ylim,
            logz=logz)

    # Do 1D projection plots
    for (jet_pt_min, jet_pt_max) in jet_pt_vals:
        lw = 2
        dirname = "Dijet_genjet"
        jet_type = "g"
        plotname = jet_type + "genjet_constituent_zi_vs_constituent_thetai_pt%dto%d" % (
            jet_pt_min, jet_pt_max)
        this_hist = os.path.join(dirname, plotname)

        # Do projection plots for various zi bins
        cut_zi_bins = [(0, 0.001), (0, 0.005),
                       (0, 0.01), (0, 0.05), (0.05, 0.1), (0, 0.1), (0.1, 0.2),
                       (0.3, 0.4), (0.4, 0.5), (0.8, 1.0), (0, 1)]

        for i, (start_val, end_val) in enumerate(cut_zi_bins):
            entries_normal = []

            h2d_mgpythia = grab_obj(
                os.path.join(mgpythia_dir, qgc.QCD_FILENAME), this_hist)
            mgpythia_kwargs = dict(line_color=qgc.QCD_COLOUR,
                                   fill_color=qgc.QCD_COLOUR,
                                   label="MG+Pythia",
                                   line_width=lw)
            entries_normal.append(
                (qgg.get_projection_plot(h2d_mgpythia, start_val, end_val,
                                         'y'), mgpythia_kwargs))

            h2d_pythiaonly = grab_obj(
                os.path.join(pythia_only_dir, qgc.QCD_FILENAME), this_hist)
            pythiaonly_kwargs = dict(line_color=ROOT.kRed,
                                     fill_color=ROOT.kRed,
                                     label="Pythia only",
                                     line_width=lw)
            entries_normal.append(
                (qgg.get_projection_plot(h2d_pythiaonly, start_val, end_val,
                                         'y'), pythiaonly_kwargs))

            ofilename = jet_type + "genjet_constituent_thetai_binned_zi%gto%g_jetPt%dto%d" % (
                start_val, end_val, jet_pt_min, jet_pt_max)
            rebin = 5 if end_val <= 0.1 else 2
            xlim = None if end_val <= 0.1 else [0, 0.6]
            if end_val >= 1:
                rebin = 4
                xlim = [0, 1.2]
            qgg.do_comparison_plot(
                entries_normal,
                "%s/constituent_plots/%s.%s" %
                (plot_dir, ofilename, OUTPUT_FMT),
                rebin=rebin,
                title="%g < z_{i} < %g, %d < p_{T}^{jet} < %d GeV" %
                (start_val, end_val, jet_pt_min, jet_pt_max),
                xtitle="#theta_{i}",
                xlim=xlim,
                ylim=None,
                subplot_type="ratio",
                subplot_title="#splitline{Ratio wrt}{MG+Pythia}")

        # Do projections hists for various theta_i bins
        cut_thetai_bins = [(0, 0.01), (0.01, 0.02), (0.02, 0.05), (0.05, 0.10),
                           (0.1, 0.15), (0.15, 0.2), (0.2, 0.3), (0.3, 0.4),
                           (0.4, 0.6), (0.6, 0.8), (0.8, 1), (1, 1.5),
                           (0, 2)][-1:]
        deltas = []
        delta_components = []
        colours = [
            ROOT.kBlue, ROOT.kRed, ROOT.kGreen + 2, ROOT.kOrange - 3,
            ROOT.kMagenta, ROOT.kAzure + 1
        ]

        for i, (start_val, end_val) in enumerate(cut_thetai_bins[::]):
            entries_normal = []

            h2d_mgpythia = grab_obj(
                os.path.join(mgpythia_dir, qgc.QCD_FILENAME), this_hist)
            mgpythia_kwargs = dict(line_color=qgc.QCD_COLOUR,
                                   fill_color=qgc.QCD_COLOUR,
                                   label="MG+Pythia",
                                   line_width=lw)
            h_mgpythia = qgg.get_projection_plot(h2d_mgpythia, start_val,
                                                 end_val, 'x')
            h_mgpythia.Rebin(4)
            entries_normal.append(
                (h_mgpythia.Clone(ROOT.TUUID().AsString()), mgpythia_kwargs))

            h2d_pythiaonly = grab_obj(
                os.path.join(pythia_only_dir, qgc.QCD_FILENAME), this_hist)
            pythiaonly_kwargs = dict(line_color=ROOT.kRed,
                                     fill_color=ROOT.kRed,
                                     label="Pythia only",
                                     line_width=lw)
            h_pythiaonly = qgg.get_projection_plot(h2d_pythiaonly, start_val,
                                                   end_val, 'x')
            h_pythiaonly.Rebin(4)
            entries_normal.append((h_pythiaonly.Clone(ROOT.TUUID().AsString()),
                                   pythiaonly_kwargs))

            # rebin = 5 if end_val <= 0.1 else 2
            rebin = None
            xlim = [0, 0.5] if end_val <= 0.1 else [0, 0.2]
            if end_val == 2:
                xlim = [0, 0.2]
            ofilename = jet_type + "genjet_constituent_zi_binned_thetai%gto%g_jetPt%dto%d" % (
                start_val, end_val, jet_pt_min, jet_pt_max)
            qgg.do_comparison_plot(
                entries_normal,
                "%s/constituent_plots/%s.%s" %
                (plot_dir, ofilename, OUTPUT_FMT),
                rebin=rebin,
                title="%g < #theta_{i} < %g, %d < p_{T}^{jet} < %d GeV" %
                (start_val, end_val, jet_pt_min, jet_pt_max),
                xtitle="z_{i}",
                xlim=xlim,
                subplot_type="ratio",
                subplot_title="#splitline{Ratio wrt}{MG+Pythia}")

            ddelta_hist = qgd.get_ddelta_plot(h_mgpythia, h_pythiaonly)

            this_colour = colours[i % len(colours)]
            line_style = 1 + i // len(colours)
            c = Contribution(ddelta_hist,
                             label="%g-%g" % (start_val, end_val),
                             line_width=1,
                             line_style=line_style,
                             marker_color=this_colour,
                             line_color=this_colour,
                             fill_color=this_colour)
            delta_components.append(c)

            deltas.append(qgd.calculate_delta(ddelta_hist))

        p = Plot(delta_components,
                 what="hist",
                 ytitle="p.d.f",
                 xlim=[0, 0.2],
                 title="%d < p_{T}^{jet} < %d GeV" % (jet_pt_min, jet_pt_max))
        p.plot("NOSTACK HISTE")
        p.save("%s/constituent_plots/ddelta_thetai_jetPt%dto%d.%s" %
               (plot_dir, jet_pt_min, jet_pt_max, OUTPUT_FMT))

        gr = qgd.construct_deltas_graph(deltas[::])
        c = Contribution(gr, label="BLAH", marker_style=0)
        graph_contribs = []
        graph_contribs.append(c)
        bin_labels = ["{:g} - {:g}".format(*b) for b in cut_thetai_bins]
        qgd.do_deltas_plot(graph_contribs,
                           "%s/constituent_plots/delta_thetai_jetPt%dto%d.%s" %
                           (plot_dir, jet_pt_min, jet_pt_max, OUTPUT_FMT),
                           bin_labels=bin_labels,
                           title="%d < p_{T}^{jet} < %d GeV" %
                           (jet_pt_min, jet_pt_max),
                           xtitle="#theta_{i}")
def do_plots(root_dir, title):
    # QG variable plots
    pt_bins = qgc.PT_BINS[:]
    var_list = qgc.COMMON_VARS
    var_prepend = ""

    radius, pus = cu.get_jet_config_from_dirname(root_dir)
    jet_str = "AK%s PF %s" % (radius.upper(), pus.upper())

    for gr_append in ["", "_groomed"][:1]:
        if gr_append == "_groomed":
            print("Doing groomed plots...")
        else:
            print("Doing ungroomed plots...")

        zpj_dirname = "ZPlusJets_QG%s" % (gr_append)
        dj_cen_dirname = "Dijet_QG_central_tighter%s" % (gr_append)
        dj_fwd_dirname = "Dijet_QG_forward_tighter%s" % (gr_append)

        for ang in var_list[:]:
            print("...Doing", ang.name)
            v = "%s%s_vs_pt" % (var_prepend, ang.var)
            zpj_2d_entries = []
            dijet_cen_2d_entries = []
            dijet_fwd_2d_entries = []

            zpj_1d_entries = []
            dijet_cen_1d_entries = []
            dijet_fwd_1d_entries = []

            for pt_ind, (start_val, end_val) in enumerate(pt_bins):
                entries = []
                zpj_entries = []
                dijet_cen_entries = []
                dijet_fwd_entries = []

                # Get all plots
                lw = 2
                msize = 1.1
                data_line_width = lw
                mc_msize = 1E-3  # small enough to not be seen but not 0 - otherwise the horizontal lines on error bars don't get drawn

                mgpy_label = "MG5+Pythia8"
                hpp_label = "Herwig++"

                ####################
                # Z+JETS REGION
                ####################

                # TODO: add these

                # SINGLE MU DATA
                # if os.path.isfile(os.path.join(root_dir, qgc.SINGLE_MU_FILENAME)):
                #     h2d_dyj_data = grab_obj(os.path.join(root_dir, qgc.SINGLE_MU_FILENAME), "%s/%s" % (zpj_dirname, v))
                #     dy_kwargs_data = dict(line_color=qgc.SINGLE_MU_COLOUR, line_width=data_line_width, fill_color=qgc.SINGLE_MU_COLOUR,
                #                           marker_color=qgc.SINGLE_MU_COLOUR, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=msize*0.7,
                #                           label="Data")
                #     zpj_data_hist = qgp.get_projection_plot(h2d_dyj_data, start_val, end_val)
                #     entries.append((zpj_data_hist, dy_kwargs_data))
                #     zpj_entries.append((zpj_data_hist, dy_kwargs_data))
                #     if pt_ind == 0:
                #         zpj_2d_entries.append((h2d_dyj_data, dy_kwargs_data))

                # # PYTHIA DY MC
                # if os.path.isfile(os.path.join(root_dir, qgc.DY_FILENAME)):
                #     h2d_dyj_mc = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME), "%s/%s" % (zpj_dirname, v))
                #     dy_kwargs_mc = dict(line_color=qgc.DY_COLOUR, line_width=lw, fill_color=qgc.DY_COLOUR,
                #                         marker_color=qgc.DY_COLOUR, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=mc_msize,
                #                         label=mgpy_label,
                #                         subplot=zpj_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_dyj_mc, start_val, end_val), dy_kwargs_mc))
                #     zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc, start_val, end_val), dy_kwargs_mc))
                #     if pt_ind == 0:
                #         zpj_2d_entries.append((h2d_dyj_mc, dy_kwargs_mc))

                # # HERWIG++ DY
                # if os.path.isfile(os.path.join(root_dir, qgc.DY_HERWIG_FILENAME)):
                #     h2d_dyj_mc_hpp = grab_obj(os.path.join(root_dir, qgc.DY_HERWIG_FILENAME), "%s/%s" % (zpj_dirname, v))
                #     col_hpp = qgc.DY_COLOURS[2]
                #     dy_kwargs_mc_hpp = dict(line_color=col_hpp, line_width=lw, fill_color=col_hpp,
                #                             marker_color=col_hpp, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=mc_msize,
                #                             label=hpp_label,
                #                             subplot=zpj_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_dyj_mc_hpp, start_val, end_val), dy_kwargs_mc_hpp))
                #     zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc_hpp, start_val, end_val), dy_kwargs_mc_hpp))
                #     if pt_ind == 0:
                #         zpj_2d_entries.append((h2d_dyj_mc_hpp, dy_kwargs_mc_hpp))

                # MG+HERWIG++ DY
                # if end_val < 151:
                #     h2d_dyj_mc3 = grab_obj(os.path.join(root_dir, qgc.DY_MG_HERWIG_FILENAME), "%s/%s" % (zpj_dirname, v))
                #     col4 = qgc.DY_COLOURS[3]
                #     dy_kwargs_mc3 = dict(line_color=col4, line_width=lw, fill_color=col4,
                #                          marker_color=col4, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=0,
                #                          label="MG+Herwig++",
                #                          subplot=zpj_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_dyj_mc3, start_val, end_val), dy_kwargs_mc3))
                #     zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc3, start_val, end_val), dy_kwargs_mc3))
                #     if pt_ind == 0:
                #         zpj_2d_entries.append((h2d_dyj_mc3, dy_kwargs_mc3))
                # else:
                #     zpj_entries.append(None)

                ####################
                # DIJET CENTRAL REGION
                ####################

                # JETHT/ZEROBIAS DATA
                if os.path.isfile(os.path.join(root_dir,
                                               qgc.JETHT_ZB_FILENAME)):
                    h2d_qcd_cen_data = grab_obj(
                        os.path.join(root_dir,
                                     qgc.JETHT_ZB_FILENAME), "%s/%s" %
                        (dj_cen_dirname, v))  # use already merged jetht+zb
                    qcd_cen_kwargs_data = dict(line_color=qgc.JETHT_COLOUR,
                                               line_width=data_line_width,
                                               fill_color=qgc.JETHT_COLOUR,
                                               marker_color=qgc.JETHT_COLOUR,
                                               marker_style=cu.Marker.get(
                                                   qgc.QCD_MARKER),
                                               marker_size=msize,
                                               label="Data")
                    dijet_cen_data_hist = qgp.get_projection_plot(
                        h2d_qcd_cen_data, start_val, end_val)
                    entries.append((dijet_cen_data_hist, qcd_cen_kwargs_data))
                    dijet_cen_entries.append(
                        (dijet_cen_data_hist, qcd_cen_kwargs_data))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append(
                            (h2d_qcd_cen_data, qcd_cen_kwargs_data))

                # MG+PYTHIA QCD MC
                if os.path.isfile(os.path.join(root_dir, qgc.QCD_FILENAME)):
                    h2d_qcd_cen_mc = grab_obj(
                        os.path.join(root_dir, qgc.QCD_FILENAME),
                        "%s/%s" % (dj_cen_dirname, v))
                    qcd_cen_kwargs_mc = dict(
                        line_color=qgc.QCD_COLOUR,
                        line_width=lw,
                        fill_color=qgc.QCD_COLOUR,
                        marker_color=qgc.QCD_COLOUR,
                        marker_style=cu.Marker.get(qgc.QCD_MARKER),
                        marker_size=mc_msize,
                        label=mgpy_label + "\n[NNPDF30_lo_as_0130, default]",
                        subplot=dijet_cen_data_hist)
                    dijet_mgpy_hist = qgp.get_projection_plot(
                        h2d_qcd_cen_mc, start_val, end_val)
                    entries.append((dijet_mgpy_hist, qcd_cen_kwargs_mc))
                    dijet_cen_entries.append(
                        (dijet_mgpy_hist, qcd_cen_kwargs_mc))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append(
                            (h2d_qcd_cen_mc, qcd_cen_kwargs_mc))

                # Add NNPDF30_lo_as_0118
                fname = "uhh2.AnalysisModuleRunner.MC.MC_QCD_NNPDF30_lo_as_0118.root"
                if os.path.isfile(os.path.join(root_dir, fname)):
                    h2d_qcd_cen_mc_pdf2 = grab_obj(
                        os.path.join(root_dir, fname),
                        "%s/%s" % (dj_cen_dirname, v))
                    col = qgc.QCD_COLOURS[4]
                    qcd_cen_kwargs_mc2 = dict(
                        line_color=col,
                        line_width=lw,
                        fill_color=col,
                        marker_color=col,
                        marker_style=cu.Marker.get(qgc.QCD_MARKER),
                        marker_size=mc_msize,
                        label=mgpy_label + "\n[NNPDF30_lo_as_0118]",
                        subplot=dijet_cen_data_hist)
                    dijet_mgpy_hist2 = qgp.get_projection_plot(
                        h2d_qcd_cen_mc_pdf2, start_val, end_val)
                    entries.append((dijet_mgpy_hist2, qcd_cen_kwargs_mc2))
                    dijet_cen_entries.append(
                        (dijet_mgpy_hist2, qcd_cen_kwargs_mc2))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append(
                            (h2d_qcd_cen_mc_pdf2, qcd_cen_kwargs_mc2))

                # Add HERAPDF20_LO_EIG
                fname = "uhh2.AnalysisModuleRunner.MC.MC_QCD_HERAPDF20_LO_EIG.root"
                if os.path.isfile(os.path.join(root_dir, fname)):
                    h2d_qcd_cen_mc_pdf3 = grab_obj(
                        os.path.join(root_dir, fname),
                        "%s/%s" % (dj_cen_dirname, v))
                    col = qgc.QCD_COLOURS[5]
                    qcd_cen_kwargs_mc3 = dict(
                        line_color=col,
                        line_width=lw,
                        fill_color=col,
                        marker_color=col,
                        marker_style=cu.Marker.get(qgc.QCD_MARKER),
                        marker_size=mc_msize,
                        label=mgpy_label + "\n[HERAPDF20_LO_EIG]",
                        subplot=dijet_cen_data_hist)
                    dijet_mgpy_hist3 = qgp.get_projection_plot(
                        h2d_qcd_cen_mc_pdf3, start_val, end_val)
                    entries.append((dijet_mgpy_hist3, qcd_cen_kwargs_mc3))
                    dijet_cen_entries.append(
                        (dijet_mgpy_hist3, qcd_cen_kwargs_mc3))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append(
                            (h2d_qcd_cen_mc_pdf3, qcd_cen_kwargs_mc3))

                # Add CT14lo
                fname = "uhh2.AnalysisModuleRunner.MC.MC_QCD_CT14lo.root"
                if os.path.isfile(os.path.join(root_dir, fname)):
                    h2d_qcd_cen_mc_pdf4 = grab_obj(
                        os.path.join(root_dir, fname),
                        "%s/%s" % (dj_cen_dirname, v))
                    col = qgc.QCD_COLOURS[6]
                    qcd_cen_kwargs_mc4 = dict(line_color=col,
                                              line_width=lw,
                                              fill_color=col,
                                              marker_color=col,
                                              marker_style=cu.Marker.get(
                                                  qgc.QCD_MARKER),
                                              marker_size=mc_msize,
                                              label=mgpy_label + "\n[CT14lo]",
                                              subplot=dijet_cen_data_hist)
                    dijet_mgpy_hist4 = qgp.get_projection_plot(
                        h2d_qcd_cen_mc_pdf4, start_val, end_val)
                    entries.append((dijet_mgpy_hist4, qcd_cen_kwargs_mc4))
                    dijet_cen_entries.append(
                        (dijet_mgpy_hist4, qcd_cen_kwargs_mc4))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append(
                            (h2d_qcd_cen_mc_pdf4, qcd_cen_kwargs_mc4))

                # PYTHIA ONLY
                # if os.path.isfile(os.path.join(root_dir, qgc.QCD_PYTHIA_ONLY_FILENAME)):
                #     col = qgc.QCD_COLOURS[2]
                #     h2d_qcd_cen_mc2 = grab_obj(os.path.join(root_dir, qgc.QCD_PYTHIA_ONLY_FILENAME), "%s/%s" % (dj_cen_dirname, v))
                #     qcd_cen_kwargs_mc2 = dict(line_color=col, line_width=lw, fill_color=col,
                #                               marker_color=col, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                #                               label="Pythia8",
                #                               subplot=dijet_cen_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_qcd_cen_mc2, start_val, end_val), qcd_cen_kwargs_mc2))
                #     dijet_cen_entries.append((qgp.get_projection_plot(h2d_qcd_cen_mc2, start_val, end_val), qcd_cen_kwargs_mc2))
                #     if pt_ind == 0:
                #         dijet_cen_2d_entries.append((h2d_qcd_cen_mc2, qcd_cen_kwargs_mc2))

                # HERWIG++ QCD
                if os.path.isfile(
                        os.path.join(root_dir, qgc.QCD_HERWIG_FILENAME)):
                    col_hpp = qgc.QCD_COLOURS[3]
                    h2d_qcd_cen_mc_hpp = grab_obj(
                        os.path.join(root_dir, qgc.QCD_HERWIG_FILENAME),
                        "%s/%s" % (dj_cen_dirname, v))
                    qcd_cen_kwargs_mc_hpp = dict(line_color=col_hpp,
                                                 line_width=lw,
                                                 fill_color=col_hpp,
                                                 marker_color=col_hpp,
                                                 marker_style=cu.Marker.get(
                                                     qgc.QCD_MARKER),
                                                 marker_size=mc_msize,
                                                 label=hpp_label,
                                                 subplot=dijet_cen_data_hist)
                    dijet_hpp_hist = qgp.get_projection_plot(
                        h2d_qcd_cen_mc_hpp, start_val, end_val)
                    entries.append((dijet_hpp_hist, qcd_cen_kwargs_mc_hpp))
                    dijet_cen_entries.append(
                        (dijet_hpp_hist, qcd_cen_kwargs_mc_hpp))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append(
                            (h2d_qcd_cen_mc_hpp, qcd_cen_kwargs_mc_hpp))

                ####################
                # DIJET FORWARD REGION
                ####################

                # JETHT/ZEROBIAS DATA
                if os.path.isfile(os.path.join(root_dir,
                                               qgc.JETHT_ZB_FILENAME)):
                    h2d_qcd_fwd_data = grab_obj(
                        os.path.join(root_dir,
                                     qgc.JETHT_ZB_FILENAME), "%s/%s" %
                        (dj_fwd_dirname, v))  # use already merged jetht+zb
                    qcd_fwd_kwargs_data = dict(
                        line_color=qgc.JETHT_COLOUR,
                        line_width=data_line_width,
                        fill_color=qgc.JETHT_COLOUR,
                        marker_color=qgc.JETHT_COLOUR,
                        marker_style=cu.Marker.get('triangleDown'),
                        marker_size=msize,
                        label="Data")
                    dijet_fwd_data_hist = qgp.get_projection_plot(
                        h2d_qcd_fwd_data, start_val, end_val)
                    entries.append((dijet_fwd_data_hist, qcd_fwd_kwargs_data))
                    dijet_fwd_entries.append(
                        (dijet_fwd_data_hist, qcd_fwd_kwargs_data))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append(
                            (h2d_qcd_fwd_data, qcd_fwd_kwargs_data))

                # MG+PYTHIA QCD MC
                if os.path.isfile(os.path.join(root_dir, qgc.QCD_FILENAME)):
                    h2d_qcd_fwd_mc = grab_obj(
                        os.path.join(root_dir, qgc.QCD_FILENAME),
                        "%s/%s" % (dj_fwd_dirname, v))
                    qcd_fwd_kwargs_mc = dict(
                        line_color=qgc.QCD_COLOUR,
                        line_width=lw,
                        fill_color=qgc.QCD_COLOUR,
                        marker_color=qgc.QCD_COLOUR,
                        marker_style=cu.Marker.get(qgc.QCD_MARKER),
                        marker_size=mc_msize,
                        label=mgpy_label + "\n[NNPDF30_lo_as_0130, default]",
                        subplot=dijet_fwd_data_hist)
                    dijet_mgpy_hist = qgp.get_projection_plot(
                        h2d_qcd_fwd_mc, start_val, end_val)
                    entries.append((dijet_mgpy_hist, qcd_fwd_kwargs_mc))
                    dijet_fwd_entries.append(
                        (dijet_mgpy_hist, qcd_fwd_kwargs_mc))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append(
                            (h2d_qcd_fwd_mc, qcd_fwd_kwargs_mc))

                # Add NNPDF30_lo_as_0118
                fname = "uhh2.AnalysisModuleRunner.MC.MC_QCD_NNPDF30_lo_as_0118.root"
                if os.path.isfile(os.path.join(root_dir, fname)):
                    h2d_qcd_fwd_mc_pdf2 = grab_obj(
                        os.path.join(root_dir, fname),
                        "%s/%s" % (dj_fwd_dirname, v))
                    col = qgc.QCD_COLOURS[4]
                    qcd_fwd_kwargs_mc2 = dict(
                        line_color=col,
                        line_width=lw,
                        fill_color=col,
                        marker_color=col,
                        marker_style=cu.Marker.get(qgc.QCD_MARKER),
                        marker_size=mc_msize,
                        label=mgpy_label + "\n[NNPDF30_lo_as_0118]",
                        subplot=dijet_fwd_data_hist)
                    dijet_mgpy_hist2 = qgp.get_projection_plot(
                        h2d_qcd_fwd_mc_pdf2, start_val, end_val)
                    entries.append((dijet_mgpy_hist2, qcd_fwd_kwargs_mc2))
                    dijet_fwd_entries.append(
                        (dijet_mgpy_hist2, qcd_fwd_kwargs_mc2))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append(
                            (h2d_qcd_fwd_mc_pdf2, qcd_fwd_kwargs_mc2))

                # Add HERAPDF20_LO_EIG
                fname = "uhh2.AnalysisModuleRunner.MC.MC_QCD_HERAPDF20_LO_EIG.root"
                if os.path.isfile(os.path.join(root_dir, fname)):
                    h2d_qcd_fwd_mc_pdf3 = grab_obj(
                        os.path.join(root_dir, fname),
                        "%s/%s" % (dj_fwd_dirname, v))
                    col = qgc.QCD_COLOURS[5]
                    qcd_fwd_kwargs_mc3 = dict(
                        line_color=col,
                        line_width=lw,
                        fill_color=col,
                        marker_color=col,
                        marker_style=cu.Marker.get(qgc.QCD_MARKER),
                        marker_size=mc_msize,
                        label=mgpy_label + "\n[HERAPDF20_LO_EIG]",
                        subplot=dijet_fwd_data_hist)
                    dijet_mgpy_hist3 = qgp.get_projection_plot(
                        h2d_qcd_fwd_mc_pdf3, start_val, end_val)
                    entries.append((dijet_mgpy_hist3, qcd_fwd_kwargs_mc3))
                    dijet_fwd_entries.append(
                        (dijet_mgpy_hist3, qcd_fwd_kwargs_mc3))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append(
                            (h2d_qcd_fwd_mc_pdf3, qcd_fwd_kwargs_mc3))

                # Add CT14lo
                fname = "uhh2.AnalysisModuleRunner.MC.MC_QCD_CT14lo.root"
                if os.path.isfile(os.path.join(root_dir, fname)):
                    h2d_qcd_fwd_mc_pdf4 = grab_obj(
                        os.path.join(root_dir, fname),
                        "%s/%s" % (dj_fwd_dirname, v))
                    col = qgc.QCD_COLOURS[6]
                    qcd_fwd_kwargs_mc4 = dict(line_color=col,
                                              line_width=lw,
                                              fill_color=col,
                                              marker_color=col,
                                              marker_style=cu.Marker.get(
                                                  qgc.QCD_MARKER),
                                              marker_size=mc_msize,
                                              label=mgpy_label + "\n[CT14lo]",
                                              subplot=dijet_fwd_data_hist)
                    dijet_mgpy_hist4 = qgp.get_projection_plot(
                        h2d_qcd_fwd_mc_pdf4, start_val, end_val)
                    entries.append((dijet_mgpy_hist4, qcd_fwd_kwargs_mc4))
                    dijet_fwd_entries.append(
                        (dijet_mgpy_hist4, qcd_fwd_kwargs_mc4))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append(
                            (h2d_qcd_fwd_mc_pdf4, qcd_fwd_kwargs_mc4))

                # PYTHIA ONLY
                # if os.path.isfile(os.path.join(root_dir, qgc.QCD_PYTHIA_ONLY_FILENAME)):
                #     col = qgc.QCD_COLOURS[2]
                #     h2d_qcd_fwd_mc2 = grab_obj(os.path.join(root_dir, qgc.QCD_PYTHIA_ONLY_FILENAME), "%s/%s" % (dj_fwd_dirname, v))
                #     qcd_fwd_kwargs_mc2 = dict(line_color=col, line_width=lw, fill_color=col,
                #                               marker_color=col, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                #                               label="Pythia8",
                #                               subplot=dijet_fwd_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_qcd_fwd_mc2, start_val, end_val), qcd_fwd_kwargs_mc2))
                #     dijet_fwd_entries.append((qgp.get_projection_plot(h2d_qcd_fwd_mc2, start_val, end_val), qcd_fwd_kwargs_mc2))
                #     if pt_ind == 0:
                #         dijet_fwd_2d_entries.append((h2d_qcd_fwd_mc2, qcd_fwd_kwargs_mc2))

                # HERWIG++ QCD
                if os.path.isfile(
                        os.path.join(root_dir, qgc.QCD_HERWIG_FILENAME)):
                    col_hpp = qgc.QCD_COLOURS[3]
                    h2d_qcd_fwd_mc_hpp = grab_obj(
                        os.path.join(root_dir, qgc.QCD_HERWIG_FILENAME),
                        "%s/%s" % (dj_fwd_dirname, v))
                    qcd_fwd_kwargs_mc_hpp = dict(line_color=col_hpp,
                                                 line_width=lw,
                                                 fill_color=col_hpp,
                                                 marker_color=col_hpp,
                                                 marker_style=cu.Marker.get(
                                                     qgc.QCD_MARKER),
                                                 marker_size=mc_msize,
                                                 label=hpp_label,
                                                 subplot=dijet_fwd_data_hist)
                    dijet_hpp_hist = qgp.get_projection_plot(
                        h2d_qcd_fwd_mc_hpp, start_val, end_val)
                    entries.append((dijet_hpp_hist, qcd_fwd_kwargs_mc_hpp))
                    dijet_fwd_entries.append(
                        (dijet_hpp_hist, qcd_fwd_kwargs_mc_hpp))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append(
                            (h2d_qcd_fwd_mc_hpp, qcd_fwd_kwargs_mc_hpp))

                zpj_1d_entries.append(zpj_entries)
                dijet_cen_1d_entries.append(dijet_cen_entries)
                dijet_fwd_1d_entries.append(dijet_fwd_entries)

                #################
                # SETUP PLOTTING
                #################
                rebin = 2
                v_lower = v.lower()
                # if "multiplicity" in v_lower:
                #     rebin = 1
                # elif "flavour" in v_lower or "thrust" in v_lower:
                #     rebin = 1
                # elif 'ptd' in v_lower:
                #     rebin = 4
                # elif 'lha_charged' in v_lower:
                #     rebin = 4
                # rebin = 1

                xlim = None
                if "width" in v_lower or "ptd" in v_lower:
                    xlim = (0, 1)
                elif "thrust" in v_lower:
                    xlim = (0, 0.5)
                elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                    if end_val <= 150:
                        xlim = (0, 50)
                    else:
                        xlim = (0, 80)

                auto_xlim = False
                if "multiplicity" in v_lower or "thrust" in v_lower:
                    auto_xlim = True

                ylim = [0, None]
                if "flavour" in v_lower:
                    ylim = (0, 1)
                # elif "lha" in v_lower:
                # ylim = (0, 5)

                plot_dir = os.path.join(
                    root_dir,
                    "plots_lambda_mc_vs_data%s_pdf_compare" % (gr_append))

                subplot_title = "Simulation / Data"
                subplot_limits = (0, 2)

                xlabel = ang.name + " (" + ang.lambda_str + ")"
                if gr_append is not "":
                    xlabel = "Groomed " + ang.name + " (" + ang.lambda_str + ")"

                def _title(region_str, start_val, end_val):
                    pt_var_str = "p_{T}^{jet}"
                    s = (("{jet_algo}\n"
                          "{region_label}\n"
                          "{bin_edge_low:g} < {pt_str} < {bin_edge_high:g} GeV"
                          ).format(jet_algo=jet_str,
                                   region_label=region_str,
                                   pt_str=pt_var_str,
                                   bin_edge_low=start_val,
                                   bin_edge_high=end_val))
                    if title is not None:
                        s = "%s\n%s" % (s, title)
                    return s

                has_data = True
                draw_opt = "NOSTACK HIST E1"
                # dj central only
                # dont' try to do multiple signal regions per plot, it looks rubbish
                if len(dijet_cen_entries) > 0:
                    qgp.do_comparison_plot(
                        dijet_cen_entries,
                        "%s/ptBinned/%s_pt%dto%d_dijet_central.%s" %
                        (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                        rebin=rebin,
                        draw_opt=draw_opt,
                        title=_title(qgc.Dijet_CEN_LABEL, start_val, end_val),
                        xtitle=xlabel,
                        xlim=qgp.calc_auto_xlim([
                            d[0] for d in dijet_cen_entries
                        ]) if auto_xlim else xlim,
                        ylim=ylim,
                        data_first=has_data,
                        mean_rel_error=0.4,
                        subplot_type='ratio',
                        subplot_title=subplot_title,
                        subplot_limits=subplot_limits)

                # dj forward only
                if len(dijet_fwd_entries) > 0:
                    qgp.do_comparison_plot(
                        dijet_fwd_entries,
                        "%s/ptBinned/%s_pt%dto%d_dijet_forward.%s" %
                        (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                        rebin=rebin,
                        draw_opt=draw_opt,
                        title=_title(qgc.Dijet_FWD_LABEL, start_val, end_val),
                        xtitle=xlabel,
                        xlim=qgp.calc_auto_xlim([
                            d[0] for d in dijet_fwd_entries
                        ]) if auto_xlim else xlim,
                        ylim=ylim,
                        data_first=has_data,
                        mean_rel_error=0.4,
                        subplot_type='ratio',
                        subplot_title=subplot_title,
                        subplot_limits=subplot_limits)

                # zpj only
                if len(zpj_entries) > 0:
                    if start_val > 149:
                        # rebin *= 2
                        rebin += 1
                        # find nearest divisor
                        while (zpj_entries[0][0].GetNbinsX() % rebin != 0):
                            rebin += 1
                    if "multiplicity" in v_lower:
                        if start_val > 300:
                            rebin += 1
                            # find nearest divisor
                            while (zpj_entries[0][0].GetNbinsX() % rebin != 0):
                                rebin += 1
                    qgp.do_comparison_plot(
                        zpj_entries,
                        "%s/ptBinned/%s_pt%dto%d_zpj.%s" %
                        (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                        rebin=rebin,
                        draw_opt=draw_opt,
                        title=_title(qgc.ZpJ_LABEL, start_val, end_val),
                        xtitle=xlabel,
                        xlim=qgp.calc_auto_xlim([d[0] for d in zpj_entries])
                        if auto_xlim else xlim,
                        ylim=ylim,
                        data_first=has_data,
                        mean_rel_error=0.4,
                        subplot_type='ratio',
                        subplot_title=subplot_title,
                        subplot_limits=subplot_limits)

            # Do overall summary plots across all pt bins
            # ------------------------------------------------------------------
            ylim_mean = None
            if "width" in v_lower or "ptd" in v_lower:
                ylim_mean = (0, 0.4)
            elif "thrust" in v_lower:
                ylim_mean = (0, 0.5)
            elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                ylim_mean = (0, 100)
                ylim_mean = (0, 80)
                if end_val < 150:
                    ylim_mean = (0, 50)
            ylim_mean = None
            ylim_rms = None

            # Setup variable names for MPL
            marker = ""
            if "_" in ang.name or "^" in ang.name:
                marker = "$"
            var_label = marker + ang.name + marker + " ($%s$)" % ang.lambda_str
            if gr_append != "":
                var_label = "Groomed " + marker + ang.name + marker + " ($%s$)" % ang.lambda_str
Exemple #5
0
def do_plots(root_dir):
    # QG variable plots
    pt_bins = qgc.PT_BINS[:]
    var_list = qgc.COMMON_VARS

    radius, pus = cu.get_jet_config_from_dirname(root_dir)
    jet_str = "AK%s" % (radius.upper())

    dy_tfile, qcd_tfile = None, None

    if os.path.isfile(os.path.join(root_dir, qgc.DY_FILENAME)):
        dy_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.DY_FILENAME))

    if os.path.isfile(os.path.join(root_dir, qgc.QCD_FILENAME)):
        qcd_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.QCD_FILENAME))

    for gr_append in ["", "_groomed"]:
        if gr_append == "_groomed":
            print("Doing groomed plots...")
        else:
            print("Doing ungroomed plots...")

        # GEnJets matched to recojet, reco selection
        zpj_dirname = "ZPlusJets_QG%s" % (gr_append)
        dj_cen_dirname = "Dijet_QG_central_tighter%s" % (gr_append)
        dj_fwd_dirname = "Dijet_QG_forward_tighter%s" % (gr_append)

        # Gen Jets from gen selection
        zpj_dirname = "ZPlusJets_QG_gen%s" % (gr_append)
        dj_cen_dirname = "Dijet_QG_gen_central%s" % (gr_append)
        dj_fwd_dirname = "Dijet_QG_gen_forward%s" % (gr_append)

        for ang in var_list[:]:
            print("...Doing", ang.name)
            var_template = "{prefix}%s_vs_pt" % (ang.var
                                                 )  # {prefix} is for flavour

            for pt_ind, (start_val, end_val) in enumerate(pt_bins):
                zpj_entries = []
                dijet_cen_entries = []
                dijet_fwd_entries = []

                # Get all plots
                lw = 2
                msize = 1.1
                mc_msize = 1E-3  # small enough to not be seen but not 0 - otherwise the horizontal lines on error bars don't get drawn
                mc_msize = msize  # small enough to not be seen but not 0 - otherwise the horizontal lines on error bars don't get drawn

                flavours_dicts = [
                    {
                        "prefix": "q",
                        "label": "u/d/s"
                    },
                    {
                        "prefix": "g",
                        "label": "g"
                    },
                    {
                        "prefix": "bc",
                        "label": "b/c"
                    },
                ]

                if dy_tfile:
                    # Z+JETS REGION
                    marker = cu.Marker(qgc.DY_MARKER)
                    for flav_dict, color, mark in zip(flavours_dicts,
                                                      qgc.DY_COLOURS,
                                                      marker.cycle()):
                        h2d_dyj_mc = dy_tfile.get(
                            "%s/%s" %
                            (zpj_dirname, var_template.format(**flav_dict)))
                        dy_kwargs_mc = dict(line_color=color,
                                            line_width=lw,
                                            fill_color=color,
                                            marker_color=color,
                                            marker_style=mark,
                                            marker_size=mc_msize,
                                            label="%s flavour" %
                                            (flav_dict['label']),
                                            subplot=None)
                        zpj_entries.append(
                            (qgp.get_projection_plot(h2d_dyj_mc, start_val,
                                                     end_val), dy_kwargs_mc))

                if qcd_tfile:
                    # DIJET CENTRAL REGION
                    marker = cu.Marker(qgc.QCD_MARKER)
                    for flav_dict, color, mark in zip(flavours_dicts,
                                                      qgc.QCD_COLOURS,
                                                      marker.cycle()):
                        h2d_qcd_cen_mc = qcd_tfile.get(
                            "%s/%s" %
                            (dj_cen_dirname, var_template.format(**flav_dict)))
                        qcd_cen_kwargs_mc = dict(line_color=color,
                                                 line_width=lw,
                                                 fill_color=color,
                                                 marker_color=color,
                                                 marker_style=mark,
                                                 marker_size=mc_msize,
                                                 label="%s flavour" %
                                                 (flav_dict['label']),
                                                 subplot=None)
                        dijet_mgpy_hist = qgp.get_projection_plot(
                            h2d_qcd_cen_mc, start_val, end_val)
                        dijet_cen_entries.append(
                            (dijet_mgpy_hist, qcd_cen_kwargs_mc))

                    # DIJET FORWARD REGION
                    marker = cu.Marker(qgc.QCD_MARKER)
                    for flav_dict, color, mark in zip(flavours_dicts,
                                                      qgc.QCD_COLOURS,
                                                      marker.cycle()):
                        h2d_qcd_fwd_mc = qcd_tfile.get(
                            "%s/%s" %
                            (dj_fwd_dirname, var_template.format(**flav_dict)))
                        qcd_fwd_kwargs_mc = dict(line_color=color,
                                                 line_width=lw,
                                                 fill_color=color,
                                                 marker_color=color,
                                                 marker_style=mark,
                                                 marker_size=mc_msize,
                                                 label="%s flavour" %
                                                 (flav_dict['label']),
                                                 subplot=None)
                        dijet_mgpy_hist = qgp.get_projection_plot(
                            h2d_qcd_fwd_mc, start_val, end_val)
                        dijet_fwd_entries.append(
                            (dijet_mgpy_hist, qcd_fwd_kwargs_mc))

                #################
                # SETUP PLOTTING
                #################
                rebin = 2
                v_lower = var_template.lower()
                if "multiplicity" in v_lower:
                    rebin = 1
                # elif "flavour" in v_lower or "thrust" in v_lower:
                #     rebin = 1
                # elif 'ptd' in v_lower:
                #     rebin = 4
                # elif 'lha_charged' in v_lower:
                #     rebin = 4
                # rebin = 1

                xlim = None
                if "width" in v_lower or "ptd" in v_lower:
                    xlim = (0, 1)
                elif "thrust" in v_lower:
                    xlim = (0, 0.5)
                # elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                #     if end_val <= 150:
                #         xlim = (0, 50)
                #     else:
                #         xlim = (0, 80)

                auto_xlim = False
                if "multiplicity" in v_lower or "thrust" in v_lower:
                    auto_xlim = True

                ylim = [0, None]
                if "flavour" in v_lower:
                    ylim = (0, 1)
                # elif "lha" in v_lower:
                # ylim = (0, 5)

                plot_dir = os.path.join(
                    root_dir,
                    "plots_gen_lambda_flav_comparison%s" % (gr_append))

                subplot_title = "Simulation / Data"
                subplot_limits = (0, 2)

                xlabel = ang.name + " (" + ang.lambda_str + ")"
                if gr_append is not "":
                    xlabel = "Groomed " + ang.name + " (" + ang.lambda_str + ")"

                def _title(region_str, start_val, end_val):
                    pt_var_str = "p_{T}^{jet}"
                    s = (("{jet_algo}\n"
                          "{region_label}\n"
                          "{mc_sample}\n"
                          "{bin_edge_low:g} < {pt_str} < {bin_edge_high:g} GeV"
                          ).format(jet_algo=jet_str,
                                   region_label=region_str,
                                   mc_sample="MG5+Pythia8",
                                   pt_str=pt_var_str,
                                   bin_edge_low=start_val,
                                   bin_edge_high=end_val))
                    return s

                has_data = False
                draw_opt = "NOSTACK HIST E1"
                # dj central only
                # dont' try to do multiple signal regions per plot, it looks rubbish
                if len(dijet_cen_entries) > 0:
                    qgp.do_comparison_plot(
                        dijet_cen_entries,
                        "%s/ptBinned/%s_pt%dto%d_dijet_central.%s" %
                        (plot_dir, ang.var, start_val, end_val, OUTPUT_FMT),
                        rebin=rebin,
                        draw_opt=draw_opt,
                        title=_title(qgc.Dijet_CEN_LABEL, start_val, end_val),
                        xtitle=xlabel,
                        xlim='auto' if auto_xlim else
                        xlim,  # don't use calc_auto_xlim, since do_comparison_plot will rebin it anyway
                        ylim=ylim,
                        data_first=has_data,
                        mean_rel_error=0.4,
                        subplot_type=None,
                        lumi=cu.get_lumi_str(
                            do_dijet=False,
                            do_zpj=True))  # full lumi as just MC

                # dj forward only
                if len(dijet_fwd_entries) > 0:
                    qgp.do_comparison_plot(
                        dijet_fwd_entries,
                        "%s/ptBinned/%s_pt%dto%d_dijet_forward.%s" %
                        (plot_dir, ang.var, start_val, end_val, OUTPUT_FMT),
                        rebin=rebin,
                        draw_opt=draw_opt,
                        title=_title(qgc.Dijet_FWD_LABEL, start_val, end_val),
                        xtitle=xlabel,
                        xlim='auto' if auto_xlim else xlim,
                        ylim=ylim,
                        data_first=has_data,
                        mean_rel_error=0.4,
                        subplot_type=None,
                        lumi=cu.get_lumi_str(
                            do_dijet=False,
                            do_zpj=True))  # full lumi as just MC

                # zpj only
                if len(zpj_entries) > 0:
                    if start_val > 149:
                        # rebin *= 2
                        rebin += 1
                        # find nearest divisor
                        while (zpj_entries[0][0].GetNbinsX() % rebin != 0):
                            rebin += 1
                    if "multiplicity" in v_lower:
                        if start_val > 300:
                            rebin += 1
                            # find nearest divisor
                            while (zpj_entries[0][0].GetNbinsX() % rebin != 0):
                                rebin += 1
                    qgp.do_comparison_plot(
                        zpj_entries,
                        "%s/ptBinned/%s_pt%dto%d_zpj.%s" %
                        (plot_dir, ang.var, start_val, end_val, OUTPUT_FMT),
                        rebin=rebin,
                        draw_opt=draw_opt,
                        title=_title(qgc.ZpJ_LABEL, start_val, end_val),
                        xtitle=xlabel,
                        xlim=qgp.calc_auto_xlim([d[0] for d in zpj_entries])
                        if auto_xlim else xlim,
                        ylim=ylim,
                        data_first=has_data,
                        mean_rel_error=0.4,
                        subplot_type=None,
                        lumi=cu.get_lumi_str(do_dijet=False, do_zpj=True))
def do_1D_plot(hists,
               components_styles_dicts,
               output_filename,
               do_ratio=True,
               logx=False,
               logy=False,
               normalise_hists=True,
               title="",
               xtitle=None,
               mean_rel_error=0.4,
               data_first=True,
               show_integrals=False,
               lumi=cu.get_lumi_str(do_dijet=False, do_zpj=True)):

    if (len(hists) != len(components_styles_dicts)):
        raise RuntimeError("# hists != # components_styles_dicts (%d vs %d)" %
                           (len(hists), len(components_styles_dicts)))

    if len(hists) == 0:
        return

    # Ignore if all empty objs
    total_entries = sum(h.GetEntries() for h in hists)
    if total_entries == 0:
        print("WARNING: all plots have 0 entries")
        return

    do_ratio = (do_ratio and len(hists) > 1)

    entries = []
    components_styles_dicts = deepcopy(components_styles_dicts)
    for h, csd in zip(hists, components_styles_dicts):
        if show_integrals:
            csd['label'] += "\nIntegral = {:.4g}".format(h.Integral())
        entries.append((h.Clone(cu.get_unique_str()), csd))

    # print("Auto y limits:", min_val, max_val)
    ylim = None
    # if not normalise_hists:
    #     min_val, min_bin, max_val, max_bin = cu.get_min_max_bin_contents_multiple_hists(hists)
    #     if logy:
    #         ylim = [0.5*min_val, 50*max_val]
    #     else:
    #         # ylim = [0.5*min_val, 1.5*max_val]
    #         ylim = [0, 1.5*max_val]

    xlim = "auto"  # Auto calc x limits to avoid lots of empty bins

    draw_opt = "NOSTACK HIST E1"
    subplot_title = "Simulation / Data"
    subplot_limits = (0, 2) if logy else (0.5, 1.5)
    # subplot_limits = [0.5, None]
    subplot_limits = None
    qgp.do_comparison_plot(
        entries,
        output_filename,
        # rebin=rebin,
        normalise_hist=normalise_hists,
        draw_opt=draw_opt,
        title=title,
        xtitle=xtitle,
        xlim=xlim,
        ylim=ylim,
        logx=logx,
        logy=logy,
        mean_rel_error=mean_rel_error,
        data_first=data_first,
        subplot_type='ratio' if do_ratio else None,
        subplot_title=subplot_title,
        subplot=entries[0][0] if do_ratio else None,
        subplot_limits=subplot_limits,
        lumi=lumi)
Exemple #7
0
                subplot_title = "Nominal / No SF"
                subplot_limits = (0.5, 1.5)

                xlabel = ang.name + " (" + ang.lambda_str + ")"
                if gr_append is not "":
                    xlabel = "Groomed " + ang.name + " (" + ang.lambda_str + ")"

                # dj central only
                qgp.do_comparison_plot(
                    dijet_cen_no_vs_nominal_sf_entries,
                    "%s/ptBinned/%s_pt%dto%d_dijet_central.%s" %
                    (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                    rebin=rebin,
                    title="%d < p_{T}^{jet} < %d GeV\n%s\n%s" %
                    (start_val, end_val, jet_str, qgc.Dijet_CEN_LABEL),
                    xtitle=xlabel,
                    xlim=xlim,
                    ylim=ylim,
                    has_data=False,
                    subplot_type='ratio',
                    subplot_title=subplot_title,
                    subplot_limits=subplot_limits)

                # dj forward only
                qgp.do_comparison_plot(
                    dijet_fwd_no_vs_nominal_sf_entries,
                    "%s/ptBinned/%s_pt%dto%d_dijet_forward.%s" %
                    (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                    rebin=rebin,
                    title="%d < p_{T}^{jet} < %d GeV\n%s\n%s" %
                    (start_val, end_val, jet_str, qgc.Dijet_FWD_LABEL),
def do_wrong_plots(root_dir,
                   var_prepend="",
                   plot_dir="wrong_flavs",
                   zpj_dirname="ZPlusJets_QG",
                   dj_dirname="Dijet_QG",
                   pt_bins=None,
                   title=""):
    """Plot all the sample/selection/flavour combinations to check distributions indep of sample"""
    pt_bins = pt_bins or qgc.THEORY_PT_BINS
    plot_vars = [
        'jet_LHA', 'jet_pTD', 'jet_width', 'jet_thrust', 'jet_multiplicity'
    ]
    if "puppi" in root_dir.lower():
        plot_vars.append('jet_puppiMultiplicity')
    for v in plot_vars:
        v = "%s%s_vs_pt" % (var_prepend, v)

        h2d_dyj_chs = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME),
                               "%s/q%s" % (zpj_dirname, v))
        h2d_dyj_wrong_chs = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME),
                                     "%s/g%s" % (zpj_dirname, v))
        h2d_dyj_qcd_chs = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME),
                                   "%s/q%s" % (dj_dirname, v))
        h2d_dyj_qcd_wrong_chs = grab_obj(
            os.path.join(root_dir, qgc.DY_FILENAME),
            "%s/g%s" % (dj_dirname, v))
        h2d_qcd_chs = grab_obj(os.path.join(root_dir, qgc.QCD_FILENAME),
                               "%s/g%s" % (dj_dirname, v))
        h2d_qcd_wrong_chs = grab_obj(os.path.join(root_dir, qgc.QCD_FILENAME),
                                     "%s/q%s" % (dj_dirname, v))

        lw = 1
        dy_kwargs_chs = dict(line_color=qgc.DY_COLOUR,
                             fill_color=qgc.DY_COLOUR,
                             label=qgc.DY_ZpJ_QFLAV_LABEL,
                             line_width=lw,
                             marker_style=20,
                             marker_color=qgc.DY_COLOUR)
        dy_kwargs_wrong_chs = dict(line_color=qgc.DY_COLOUR + 4,
                                   fill_color=qgc.DY_COLOUR + 4,
                                   label=qgc.DY_ZpJ_GFLAV_LABEL,
                                   line_width=lw,
                                   line_style=1,
                                   marker_style=21,
                                   marker_color=qgc.DY_COLOUR + 4)
        dy_kwargs_qcd_chs = dict(line_color=ROOT.kGreen + 2,
                                 fill_color=ROOT.kGreen + 2,
                                 label=qgc.DY_Dijet_QFLAV_LABEL,
                                 line_width=lw,
                                 line_style=1,
                                 marker_style=22,
                                 marker_color=ROOT.kGreen + 2)
        dy_kwargs_qcd_wrong_chs = dict(line_color=ROOT.kOrange - 1,
                                       fill_color=ROOT.kOrange - 1,
                                       label=qgc.DY_Dijet_GFLAV_LABEL,
                                       line_width=lw,
                                       line_style=1,
                                       marker_style=23,
                                       marker_color=ROOT.kOrange - 1)
        qcd_kwargs_chs = dict(line_color=qgc.QCD_COLOUR,
                              fill_color=qgc.QCD_COLOUR,
                              label=qgc.QCD_Dijet_GFLAV_LABEL,
                              line_width=lw,
                              marker_style=25,
                              marker_color=qgc.QCD_COLOUR)
        qcd_kwargs_wrong_chs = dict(line_color=ROOT.kRed,
                                    fill_color=ROOT.kRed,
                                    label=qgc.QCD_Dijet_QFLAV_LABEL,
                                    line_width=lw,
                                    line_style=1,
                                    marker_style=24,
                                    marker_color=ROOT.kRed)

        rebin = 2
        xlim = None
        if "thrust" in v:
            rebin = 1
            xlim = (0, 0.5)
        if "multiplicity" in v.lower():
            rebin = 2
            xlim = (0, 100)

        for (start_val, end_val) in pt_bins:
            entries = [
                (qgg.get_projection_plot(h2d_dyj_chs, start_val,
                                         end_val), dy_kwargs_chs),
                (qgg.get_projection_plot(h2d_dyj_wrong_chs, start_val,
                                         end_val), dy_kwargs_wrong_chs),
                # (qgg.get_projection_plot(h2d_dyj_qcd_chs, start_val, end_val), dy_kwargs_qcd_chs),
                # (qgg.get_projection_plot(h2d_dyj_qcd_wrong_chs, start_val, end_val), dy_kwargs_qcd_wrong_chs),
                (qgg.get_projection_plot(h2d_qcd_wrong_chs, start_val,
                                         end_val), qcd_kwargs_wrong_chs),
                (qgg.get_projection_plot(h2d_qcd_chs, start_val,
                                         end_val), qcd_kwargs_chs),
            ]

            this_title = "%d < p_{T}^{jet} < %d GeV" % (start_val, end_val)
            if title != "":
                this_title += ", %s" % title
            qgg.do_comparison_plot(
                entries,
                "%s/%s/%s_pt%dto%d_flavMatched.%s" %
                (root_dir, plot_dir, v, start_val, end_val, OUTPUT_FMT),
                rebin=rebin,
                title=this_title,
                xlim=xlim)
def do_plots(root_dir, title):
    # QG variable plots
    pt_bins = qgc.PT_BINS[:]
    print(pt_bins)
    var_list = qgc.COMMON_VARS
    var_prepend = ""

    radius, pus = cu.get_jet_config_from_dirname(root_dir)
    jet_str = "AK%s PF %s" % (radius.upper(), pus.upper())

    if radius == "8":
        pt_bins = qgc.PT_BINS[2:]
        print(pt_bins)

    single_mu_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.SINGLE_MU_FILENAME))
    dy_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.DY_FILENAME))
    dy_hpp_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.DY_HERWIG_FILENAME))
    jetht_zb_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.JETHT_ZB_FILENAME))
    qcd_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.QCD_FILENAME))
    qcd_hpp_tfile = cu.TFileCacher(os.path.join(root_dir, qgc.QCD_HERWIG_FILENAME))

    for gr_append in ["", "_groomed"]:
        if gr_append == "_groomed":
            print("Doing groomed plots...")
        else:
            print("Doing ungroomed plots...")

        zpj_dirname = "ZPlusJets_QG%s" % (gr_append)
        dj_cen_dirname = "Dijet_QG_central_tighter%s" % (gr_append)
        dj_fwd_dirname = "Dijet_QG_forward_tighter%s" % (gr_append)

        for ang in var_list[:]:
            print("...Doing", ang.name)
            v = "%s%s_vs_pt" % (var_prepend, ang.var)
            zpj_2d_entries = []
            dijet_cen_2d_entries = []
            dijet_fwd_2d_entries = []

            zpj_1d_entries = []
            dijet_cen_1d_entries = []
            dijet_fwd_1d_entries = []

            for pt_ind, (start_val, end_val) in enumerate(pt_bins):
                entries = []
                zpj_entries = []
                dijet_cen_entries = []
                dijet_fwd_entries = []

                # Get all plots
                lw = 2
                msize = 1.1
                data_line_width = lw
                mc_msize = 1E-3  # small enough to not be seen but not 0 - otherwise the horizontal lines on error bars don't get drawn

                mgpy_label = "MG5+Pythia8"
                hpp_label = "Herwig++"

                ####################
                # Z+JETS REGION
                ####################

                # SINGLE MU DATA
                if single_mu_tfile:
                    h2d_dyj_data = single_mu_tfile.get("%s/%s" % (zpj_dirname, v))
                    dy_kwargs_data = dict(line_color=qgc.SINGLE_MU_COLOUR, line_width=data_line_width, fill_color=qgc.SINGLE_MU_COLOUR,
                                          marker_color=qgc.SINGLE_MU_COLOUR, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=msize*0.7,
                                          label="Data")
                    zpj_data_hist = qgp.get_projection_plot(h2d_dyj_data, start_val, end_val)
                    entries.append((zpj_data_hist, dy_kwargs_data))
                    zpj_entries.append((zpj_data_hist, dy_kwargs_data))
                    if pt_ind == 0:
                        zpj_2d_entries.append((h2d_dyj_data, dy_kwargs_data))

                # PYTHIA DY MC
                if dy_tfile:
                    h2d_dyj_mc = dy_tfile.get("%s/%s" % (zpj_dirname, v))
                    dy_kwargs_mc = dict(line_color=qgc.DY_COLOUR, line_width=lw, fill_color=qgc.DY_COLOUR,
                                        marker_color=qgc.DY_COLOUR, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=mc_msize,
                                        label=mgpy_label,
                                        subplot=zpj_data_hist)
                    entries.append((qgp.get_projection_plot(h2d_dyj_mc, start_val, end_val), dy_kwargs_mc))
                    zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc, start_val, end_val), dy_kwargs_mc))
                    if pt_ind == 0:
                        zpj_2d_entries.append((h2d_dyj_mc, dy_kwargs_mc))

                # HERWIG++ DY
                if dy_hpp_tfile:
                    h2d_dyj_mc_hpp = dy_hpp_tfile.get("%s/%s" % (zpj_dirname, v))
                    col_hpp = qgc.DY_COLOURS[2]
                    dy_kwargs_mc_hpp = dict(line_color=col_hpp, line_width=lw, fill_color=col_hpp,
                                            marker_color=col_hpp, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=mc_msize,
                                            label=hpp_label,
                                            subplot=zpj_data_hist)
                    entries.append((qgp.get_projection_plot(h2d_dyj_mc_hpp, start_val, end_val), dy_kwargs_mc_hpp))
                    zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc_hpp, start_val, end_val), dy_kwargs_mc_hpp))
                    if pt_ind == 0:
                        zpj_2d_entries.append((h2d_dyj_mc_hpp, dy_kwargs_mc_hpp))

                # MG+HERWIG++ DY
                # if end_val < 151:
                #     h2d_dyj_mc3 = get("%s/%s" % (zpj_dirname, v))
                #     col4 = qgc.DY_COLOURS[3]
                #     dy_kwargs_mc3 = dict(line_color=col4, line_width=lw, fill_color=col4,
                #                          marker_color=col4, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=0,
                #                          label="MG+Herwig++",
                #                          subplot=zpj_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_dyj_mc3, start_val, end_val), dy_kwargs_mc3))
                #     zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc3, start_val, end_val), dy_kwargs_mc3))
                #     if pt_ind == 0:
                #         zpj_2d_entries.append((h2d_dyj_mc3, dy_kwargs_mc3))
                # else:
                #     zpj_entries.append(None)

                ####################
                # DIJET CENTRAL REGION
                ####################

                # JETHT/ZEROBIAS DATA
                if jetht_zb_tfile:
                    h2d_qcd_cen_data = jetht_zb_tfile.get("%s/%s" % (dj_cen_dirname, v))  # use already merged jetht+zb
                    qcd_cen_kwargs_data = dict(line_color=qgc.JETHT_COLOUR, line_width=data_line_width, fill_color=qgc.JETHT_COLOUR,
                                               marker_color=qgc.JETHT_COLOUR, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=msize,
                                               label="Data")
                    dijet_cen_data_hist = qgp.get_projection_plot(h2d_qcd_cen_data, start_val, end_val)
                    entries.append((dijet_cen_data_hist, qcd_cen_kwargs_data))
                    dijet_cen_entries.append((dijet_cen_data_hist, qcd_cen_kwargs_data))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append((h2d_qcd_cen_data, qcd_cen_kwargs_data))

                # MG+PYTHIA QCD MC
                if qcd_tfile:
                    h2d_qcd_cen_mc = qcd_tfile.get("%s/%s" % (dj_cen_dirname, v))
                    qcd_cen_kwargs_mc = dict(line_color=qgc.QCD_COLOUR, line_width=lw, fill_color=qgc.QCD_COLOUR,
                                             marker_color=qgc.QCD_COLOUR, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                                             label=mgpy_label,
                                             subplot=dijet_cen_data_hist)
                    dijet_mgpy_hist = qgp.get_projection_plot(h2d_qcd_cen_mc, start_val, end_val)
                    entries.append((dijet_mgpy_hist, qcd_cen_kwargs_mc))
                    dijet_cen_entries.append((dijet_mgpy_hist, qcd_cen_kwargs_mc))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append((h2d_qcd_cen_mc, qcd_cen_kwargs_mc))

                # PYTHIA ONLY
                # if qcd_py_tfile:
                #     col = qgc.QCD_COLOURS[2]
                #     h2d_qcd_cen_mc2 = qcd_py_tfile.get("%s/%s" % (dj_cen_dirname, v))
                #     qcd_cen_kwargs_mc2 = dict(line_color=col, line_width=lw, fill_color=col,
                #                               marker_color=col, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                #                               label="Pythia8",
                #                               subplot=dijet_cen_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_qcd_cen_mc2, start_val, end_val), qcd_cen_kwargs_mc2))
                #     dijet_cen_entries.append((qgp.get_projection_plot(h2d_qcd_cen_mc2, start_val, end_val), qcd_cen_kwargs_mc2))
                #     if pt_ind == 0:
                #         dijet_cen_2d_entries.append((h2d_qcd_cen_mc2, qcd_cen_kwargs_mc2))

                # HERWIG++ QCD
                if qcd_hpp_tfile:
                    h2d_qcd_cen_mc_hpp = qcd_hpp_tfile.get("%s/%s" % (dj_cen_dirname, v))
                    qcd_cen_kwargs_mc_hpp = dict(line_color=qgc.HERWIGPP_QCD_COLOUR, line_width=lw, fill_color=qgc.HERWIGPP_QCD_COLOUR,
                                                 marker_color=qgc.HERWIGPP_QCD_COLOUR, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                                                 label=hpp_label,
                                                 subplot=dijet_cen_data_hist)
                    dijet_hpp_hist = qgp.get_projection_plot(h2d_qcd_cen_mc_hpp, start_val, end_val)
                    entries.append((dijet_hpp_hist, qcd_cen_kwargs_mc_hpp))
                    dijet_cen_entries.append((dijet_hpp_hist, qcd_cen_kwargs_mc_hpp))
                    if pt_ind == 0:
                        dijet_cen_2d_entries.append((h2d_qcd_cen_mc_hpp, qcd_cen_kwargs_mc_hpp))

                ####################
                # DIJET FORWARD REGION
                ####################

                # JETHT/ZEROBIAS DATA
                if jetht_zb_tfile:
                    h2d_qcd_fwd_data = jetht_zb_tfile.get("%s/%s" % (dj_fwd_dirname, v))  # use already merged jetht+zb
                    qcd_fwd_kwargs_data = dict(line_color=qgc.JETHT_COLOUR, line_width=data_line_width, fill_color=qgc.JETHT_COLOUR,
                                               marker_color=qgc.JETHT_COLOUR, marker_style=cu.Marker.get('triangleDown'), marker_size=msize,
                                               label="Data")
                    dijet_fwd_data_hist = qgp.get_projection_plot(h2d_qcd_fwd_data, start_val, end_val)
                    entries.append((dijet_fwd_data_hist, qcd_fwd_kwargs_data))
                    dijet_fwd_entries.append((dijet_fwd_data_hist, qcd_fwd_kwargs_data))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append((h2d_qcd_fwd_data, qcd_fwd_kwargs_data))

                # MG+PYTHIA QCD MC
                if qcd_tfile:
                    h2d_qcd_fwd_mc = qcd_tfile.get("%s/%s" % (dj_fwd_dirname, v))
                    qcd_fwd_kwargs_mc = dict(line_color=qgc.QCD_COLOUR, line_width=lw, fill_color=qgc.QCD_COLOUR,
                                             marker_color=qgc.QCD_COLOUR, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                                             label=mgpy_label,
                                             subplot=dijet_fwd_data_hist)
                    dijet_mgpy_hist = qgp.get_projection_plot(h2d_qcd_fwd_mc, start_val, end_val)
                    entries.append((dijet_mgpy_hist, qcd_fwd_kwargs_mc))
                    dijet_fwd_entries.append((dijet_mgpy_hist, qcd_fwd_kwargs_mc))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append((h2d_qcd_fwd_mc, qcd_fwd_kwargs_mc))

                # PYTHIA ONLY
                # if qcd_py_tfile:
                    # col = qgc.QCD_COLOURS[2]
                    # h2d_qcd_fwd_mc2 = qcd_py_tfile.get("%s/%s" % (dj_fwd_dirname, v))
                    # qcd_fwd_kwargs_mc2 = dict(line_color=col, line_width=lw, fill_color=col,
                    #                           marker_color=col, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                    #                           label="Pythia8",
                    #                           subplot=dijet_fwd_data_hist)
                    # entries.append((qgp.get_projection_plot(h2d_qcd_fwd_mc2, start_val, end_val), qcd_fwd_kwargs_mc2))
                    # dijet_fwd_entries.append((qgp.get_projection_plot(h2d_qcd_fwd_mc2, start_val, end_val), qcd_fwd_kwargs_mc2))
                    # if pt_ind == 0:
                    #     dijet_fwd_2d_entries.append((h2d_qcd_fwd_mc2, qcd_fwd_kwargs_mc2))

                # HERWIG++ QCD
                if qcd_hpp_tfile:
                    h2d_qcd_fwd_mc_hpp = qcd_hpp_tfile.get("%s/%s" % (dj_fwd_dirname, v))
                    qcd_fwd_kwargs_mc_hpp = dict(line_color=qgc.HERWIGPP_QCD_COLOUR, line_width=lw, fill_color=qgc.HERWIGPP_QCD_COLOUR,
                                                 marker_color=qgc.HERWIGPP_QCD_COLOUR, marker_style=cu.Marker.get(qgc.QCD_MARKER), marker_size=mc_msize,
                                                 label=hpp_label,
                                                 subplot=dijet_fwd_data_hist)
                    dijet_hpp_hist = qgp.get_projection_plot(h2d_qcd_fwd_mc_hpp, start_val, end_val)
                    entries.append((dijet_hpp_hist, qcd_fwd_kwargs_mc_hpp))
                    dijet_fwd_entries.append((dijet_hpp_hist, qcd_fwd_kwargs_mc_hpp))
                    if pt_ind == 0:
                        dijet_fwd_2d_entries.append((h2d_qcd_fwd_mc_hpp, qcd_fwd_kwargs_mc_hpp))

                zpj_1d_entries.append(zpj_entries)
                dijet_cen_1d_entries.append(dijet_cen_entries)
                dijet_fwd_1d_entries.append(dijet_fwd_entries)

                #################
                # SETUP PLOTTING
                #################
                rebin = 2
                v_lower = v.lower()
                if "multiplicity" in v_lower:
                    rebin = 1
                # elif "flavour" in v_lower or "thrust" in v_lower:
                #     rebin = 1
                # elif 'ptd' in v_lower:
                #     rebin = 4
                # elif 'lha_charged' in v_lower:
                #     rebin = 4
                # rebin = 1

                xlim = None
                if "width" in v_lower or "ptd" in v_lower:
                    xlim = (0, 1)
                elif "thrust" in v_lower:
                    xlim = (0, 0.5)
                # elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                #     if end_val <= 150:
                #         xlim = (0, 50)
                #     else:
                #         xlim = (0, 80)

                auto_xlim = False
                if "multiplicity" in v_lower or "thrust" in v_lower:
                    auto_xlim = True

                ylim = [0, None]
                if "flavour" in v_lower:
                    ylim = (0, 1)
                # elif "lha" in v_lower:
                    # ylim = (0, 5)

                plot_dir = os.path.join(root_dir, "plots_lambda_mc_vs_data%s" % (gr_append))

                subplot_title = "Simulation / Data"
                subplot_limits = (0, 2)

                xlabel = ang.name + " (" + ang.lambda_str + ")"
                if gr_append is not "":
                    xlabel = "Groomed " + ang.name + " (" + ang.lambda_str + ")"

                def _title(region_str, start_val, end_val):
                    pt_var_str = "p_{T}^{jet}"
                    s = (("{jet_algo}\n"
                          "{region_label}\n"
                          "{bin_edge_low:g} < {pt_str} < {bin_edge_high:g} GeV")
                          .format(
                            jet_algo=jet_str,
                            region_label=region_str,
                            pt_str=pt_var_str,
                            bin_edge_low=start_val,
                            bin_edge_high=end_val))
                    if title is not None:
                        s = "%s\n%s" % (s, title)
                    return s

                has_data = True
                draw_opt = "NOSTACK HIST E1"
                # dj central only
                # dont' try to do multiple signal regions per plot, it looks rubbish
                if len(dijet_cen_entries) > 0:
                    qgp.do_comparison_plot(dijet_cen_entries,
                                           "%s/ptBinned/%s_pt%dto%d_dijet_central.%s" % (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                                           rebin=rebin,
                                           draw_opt=draw_opt,
                                           title=_title(qgc.Dijet_CEN_LABEL, start_val, end_val),
                                           xtitle=xlabel,
                                           xlim='auto' if auto_xlim else xlim, # don't use calc_auto_xlim, since do_comparison_plot will rebin it anyway
                                           ylim=ylim,
                                           data_first=has_data,
                                           mean_rel_error=0.4,
                                           subplot_type='ratio',
                                           subplot_title=subplot_title,
                                           subplot_limits=subplot_limits,
                                           lumi=cu.get_lumi_str(do_dijet=True, do_zpj=False))

                # dj forward only
                if len(dijet_fwd_entries) > 0:
                    qgp.do_comparison_plot(dijet_fwd_entries,
                                           "%s/ptBinned/%s_pt%dto%d_dijet_forward.%s" % (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                                           rebin=rebin,
                                           draw_opt=draw_opt,
                                           title=_title(qgc.Dijet_FWD_LABEL, start_val, end_val),
                                           xtitle=xlabel,
                                           xlim='auto' if auto_xlim else xlim,
                                           ylim=ylim,
                                           data_first=has_data,
                                           mean_rel_error=0.4,
                                           subplot_type='ratio',
                                           subplot_title=subplot_title,
                                           subplot_limits=subplot_limits,
                                           lumi=cu.get_lumi_str(do_dijet=True, do_zpj=False))

                # zpj only
                if len(zpj_entries) > 0:
                    if start_val > 149:
                        # rebin *= 2
                        rebin += 1
                        # find nearest divisor
                        while (zpj_entries[0][0].GetNbinsX() % rebin != 0):
                            rebin += 1
                    if "multiplicity" in v_lower:
                        if start_val > 300:
                            rebin += 1
                            # find nearest divisor
                            while (zpj_entries[0][0].GetNbinsX() % rebin != 0):
                                rebin += 1
                    qgp.do_comparison_plot(zpj_entries,
                                           "%s/ptBinned/%s_pt%dto%d_zpj.%s" % (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                                           rebin=rebin,
                                           draw_opt=draw_opt,
                                           title=_title(qgc.ZpJ_LABEL, start_val, end_val),
                                           xtitle=xlabel,
                                           xlim=qgp.calc_auto_xlim([d[0] for d in zpj_entries]) if auto_xlim else xlim,
                                           ylim=ylim,
                                           data_first=has_data,
                                           mean_rel_error=0.4,
                                           subplot_type='ratio',
                                           subplot_title=subplot_title,
                                           subplot_limits=subplot_limits,
                                           lumi=cu.get_lumi_str(do_dijet=False, do_zpj=True))


            # Do overall summary plots across all pt bins
            # ------------------------------------------------------------------
            ylim_mean = None
            if "width" in v_lower or "ptd" in v_lower:
                ylim_mean = (0, 0.4)
            elif"thrust" in v_lower:
                ylim_mean = (0, 0.5)
            elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                ylim_mean = (0, 100)
                ylim_mean = (0, 80)
                if end_val < 150:
                    ylim_mean = (0, 50)
            ylim_mean=None
            ylim_rms=None

            # Setup variable names for MPL
            marker = ""
            if "_" in ang.name or "^" in ang.name:
                marker = "$"
            var_label = marker + ang.name + marker + " ($%s$)" % ang.lambda_str
            if gr_append != "":
                var_label = "Groomed " + marker + ang.name + marker + " ($%s$)" % ang.lambda_str

            # construct a dataframe from the hists
            # df = construct_dataframe_from_hists(dijet_cen_entries=dijet_cen_1d_entries,
            #                                     dijet_fwd_entries=dijet_fwd_entries,
            #                                     zpj_entries=zpj_entries)

            # pt_low = 88 if "8" in radius else 50 
            pt_low = pt_bins[0][0]
            qgp.do_mean_rms_summary_plot(dijet_cen_1d_entries,
                                         pt_bins,
                                         "%s/ptBinned/%s_box_dijet_cen_mpl.%s" % (plot_dir, v, OUTPUT_FMT),
                                         var_label=var_label,
                                         xlim=(pt_low, 4000),
                                         ylim_mean=ylim_mean,
                                         ylim_rms=ylim_rms,
                                         region_title="%s jets in %s" % (jet_str, qgc.Dijet_CEN_LABEL.lower()))

            qgp.do_mean_rms_summary_plot(dijet_fwd_1d_entries,
                                         pt_bins,
                                         "%s/ptBinned/%s_box_dijet_fwd_mpl.%s" % (plot_dir, v, OUTPUT_FMT),
                                         var_label=var_label,
                                         xlim=(pt_low, 4000),
                                         ylim_mean=ylim_mean,
                                         ylim_rms=ylim_rms,
                                         region_title="%s jets in %s" % (jet_str, qgc.Dijet_FWD_LABEL.lower()))

            # zpj_1d_entries[i][j] is the jth sample in the ith pt bin
            qgp.do_mean_rms_summary_plot(zpj_1d_entries,
                                         pt_bins,
                                         "%s/ptBinned/%s_box_zpj_mpl.%s" % (plot_dir, v, OUTPUT_FMT),
                                         var_label=var_label,
                                         xlim=(pt_low, 800),
                                         ylim_mean=ylim_mean,
                                         ylim_rms=ylim_rms,
                                         region_title="%s jets in %s" % (jet_str, qgc.ZpJ_LABEL))
def do_plots(root_dir):
    # QG variable plots
    pt_bins = qgc.PT_BINS[:]
    var_list = qgc.COMMON_VARS
    var_prepend = ""

    radius, pus = cu.get_jet_config_from_dirname(root_dir)
    jet_str = "AK%s PF %s" % (radius.upper(), pus.upper())

    for gr_append in ["", "_groomed"]:
        if gr_append == "_groomed":
            print("Doing groomed plots...")
        else:
            print("Doing ungroomed plots...")

        # do a pt plot just for sanity
        if gr_append == "":
            make_1d_plot(root_dir, "ZPlusJets_gen/pt_jet1", jet_str, gen_only=True)
            make_1d_plot(root_dir, "ZPlusJets_gen/pt_mumu", jet_str, gen_only=True)
            make_1d_plot(root_dir, "ZPlusJets/pt_jet1", jet_str)
            make_1d_plot(root_dir, "ZPlusJets/pt_mumu", jet_str)

        continue

        zpj_dirname = "ZPlusJets_QG%s" % (gr_append)

        for ang in var_list[:]:
            print("...Doing", ang.name)
            v = "%s%s_vs_pt" % (var_prepend, ang.var)
            zpj_2d_entries = []

            zpj_1d_entries = []

            for pt_ind, (start_val, end_val) in enumerate(pt_bins):
                entries = []
                zpj_entries = []

                # Get all plots
                lw = 2
                msize = 1.1
                data_line_width = 0

                ####################
                # Z+JETS REGION
                ####################

                # SINGLE MU DATA
                h2d_dyj_data = grab_obj(os.path.join(root_dir, qgc.SINGLE_MU_FILENAME), "%s/%s" % (zpj_dirname, v))
                dy_kwargs_data = dict(line_color=qgc.SINGLE_MU_COLOUR, line_width=data_line_width, fill_color=qgc.SINGLE_MU_COLOUR,
                                      marker_color=qgc.SINGLE_MU_COLOUR, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=msize,
                                      label="Data")
                zpj_data_hist = qgp.get_projection_plot(h2d_dyj_data, start_val, end_val)
                entries.append((zpj_data_hist, dy_kwargs_data))
                zpj_entries.append((zpj_data_hist, dy_kwargs_data))
                if pt_ind == 0:
                    zpj_2d_entries.append((h2d_dyj_data, dy_kwargs_data))

                # PYTHIA DY MC WITH k FACTORS
                h2d_dyj_mc = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME), "%s/%s" % (zpj_dirname, v))
                dy_kwargs_mc = dict(line_color=qgc.DY_COLOUR, line_width=lw, fill_color=qgc.DY_COLOUR,
                                    marker_color=qgc.DY_COLOUR, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=0,
                                    label="MG+PY8 (w/ k-factor)",
                                    subplot=zpj_data_hist)
                entries.append((qgp.get_projection_plot(h2d_dyj_mc, start_val, end_val), dy_kwargs_mc))
                zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc, start_val, end_val), dy_kwargs_mc))
                if pt_ind == 0:
                    zpj_2d_entries.append((h2d_dyj_mc, dy_kwargs_mc))

                # WIHTOUT K FACTORS
                h2d_dyj_mc_noWeight = grab_obj(os.path.join(root_dir, "uhh2.AnalysisModuleRunner.MC.MC_DYJetsToLL_noZReweight.root"), "%s/%s" % (zpj_dirname, v))
                dy_kwargs_mc_noWeight = dict(line_color=qgc.DY_COLOURS[0], line_width=lw, fill_color=qgc.DY_COLOURS[0], line_style=2,
                                    marker_color=qgc.DY_COLOURS[0], marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=0,
                                    label="MG+PY8 (w/out k-factor)",
                                    subplot=zpj_data_hist)
                entries.append((qgp.get_projection_plot(h2d_dyj_mc_noWeight, start_val, end_val), dy_kwargs_mc_noWeight))
                zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc_noWeight, start_val, end_val), dy_kwargs_mc_noWeight))
                if pt_ind == 0:
                    zpj_2d_entries.append((h2d_dyj_mc_noWeight, dy_kwargs_mc_noWeight))

                # HERWIG++ DY
                # if end_val < 255:
                #     h2d_dyj_mc2 = grab_obj(os.path.join(root_dir, qgc.DY_HERWIG_FILENAME), "%s/%s" % (zpj_dirname, v))
                #     col3 = qgc.DY_COLOURS[2]
                #     dy_kwargs_mc2 = dict(line_color=col3, line_width=lw, fill_color=col3,
                #                          marker_color=col3, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=0,
                #                          label="H++",
                #                          subplot=zpj_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_dyj_mc2, start_val, end_val), dy_kwargs_mc2))
                #     zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc2, start_val, end_val), dy_kwargs_mc2))
                #     if pt_ind == 0:
                #         zpj_2d_entries.append((h2d_dyj_mc2, dy_kwargs_mc2))
                # else:
                #     zpj_entries.append(None)

                # MG+HERWIG++ DY
                # if end_val < 151:
                #     h2d_dyj_mc3 = grab_obj(os.path.join(root_dir, qgc.DY_MG_HERWIG_FILENAME), "%s/%s" % (zpj_dirname, v))
                #     col4 = qgc.DY_COLOURS[3]
                #     dy_kwargs_mc3 = dict(line_color=col4, line_width=lw, fill_color=col4,
                #                          marker_color=col4, marker_style=cu.Marker.get(qgc.DY_MARKER), marker_size=0,
                #                          label="MG+H++",
                #                          subplot=zpj_data_hist)
                #     entries.append((qgp.get_projection_plot(h2d_dyj_mc3, start_val, end_val), dy_kwargs_mc3))
                #     zpj_entries.append((qgp.get_projection_plot(h2d_dyj_mc3, start_val, end_val), dy_kwargs_mc3))
                #     if pt_ind == 0:
                #         zpj_2d_entries.append((h2d_dyj_mc3, dy_kwargs_mc3))
                # else:
                #     zpj_entries.append(None)

                zpj_1d_entries.append(zpj_entries)

                #################
                # SETUP PLOTTING
                #################
                rebin = 2
                v_lower = v.lower()
                if "multiplicity" in v_lower:
                    rebin = 2
                elif "flavour" in v_lower or "thrust" in v_lower:
                    rebin = 1
                elif 'ptd' in v_lower:
                    rebin = 2

                xlim = None
                if "width" in v_lower or "ptd" in v_lower:
                    xlim = (0, 1)
                elif"thrust" in v_lower:
                    xlim = (0, 0.5)
                elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                    if end_val <= 150:
                        xlim = (0, 50)
                    else:
                        xlim = (0, 80)

                ylim = None
                if "flavour" in v_lower:
                    ylim = (0, 1)
                # elif "lha" in v_lower:
                    # ylim = (0, 5)

                plot_dir = os.path.join(root_dir, "plots_dy_vs_qcd_mc_vs_data%s_z_reweight" % (gr_append))

                subplot_title = "MC / Data"
                subplot_limits = (0.5, 1.5)

                xlabel = ang.name + " (" + ang.lambda_str + ")"
                if gr_append is not "":
                    xlabel = "Groomed " + ang.name + " (" + ang.lambda_str + ")"

                # zpj only
                qgp.do_comparison_plot(zpj_entries,
                                       "%s/ptBinned/%s_pt%dto%d_zpj.%s" % (plot_dir, v, start_val, end_val, OUTPUT_FMT),
                                       rebin=rebin,
                                       title="%d < p_{T}^{jet} < %d GeV\n%s\n%s" % (start_val, end_val, jet_str, qgc.ZpJ_LABEL),
                                       xtitle=xlabel,
                                       xlim=xlim,
                                       ylim=ylim,
                                       subplot_type='ratio',
                                       subplot_title=subplot_title,
                                       subplot_limits=subplot_limits)


            # Do overall summary plots across all pt bins
            # ------------------------------------------------------------------
            ylim_mean = None
            if "width" in v_lower or "ptd" in v_lower:
                ylim_mean = (0, 0.4)
            elif"thrust" in v_lower:
                ylim_mean = (0, 0.5)
            elif "multiplicity" in v_lower and "ak4" in root_dir.lower():
                ylim_mean = (0, 100)
                ylim_mean = (0, 80)
                if end_val < 150:
                    ylim_mean = (0, 50)
            ylim_mean=None
            ylim_rms=None

            # Setup variable names for MPL
            marker = ""
            if "_" in ang.name or "^" in ang.name:
                marker = "$"
            var_label = marker + ang.name + marker + " ($%s$)" % ang.lambda_str
            if gr_append != "":
                var_label = "Groomed " + marker + ang.name + marker + " ($%s$)" % ang.lambda_str


            # zpj_1d_entries[i][j] is the jth sample in the ith pt bin
            qgp.do_mean_rms_summary_plot(zpj_1d_entries[:],
                                         pt_bins[:],
                                         "%s/ptBinned/%s_box_zpj_mpl.%s" % (plot_dir, v, OUTPUT_FMT),
                                         var_label=var_label,
                                         xlim=(50, 614),
                                         ylim_mean=ylim_mean,
                                         ylim_rms=ylim_rms,
                                         region_title="%s jets in %s" % (jet_str, qgc.ZpJ_LABEL))
def do_gen_reco_comparison_plots(root_dir,
                                 var_list=None,
                                 gen_var_prepend="gen",
                                 reco_var_prepend="",
                                 plot_dir="plot_reco_gen",
                                 zpj_reco_dirname=qgc.ZPJ_RECOJET_RDIR,
                                 dj_reco_dirname=qgc.DJ_RECOJET_RDIR,
                                 zpj_gen_dirname=qgc.ZPJ_GENJET_RDIR,
                                 dj_gen_dirname=qgc.DJ_GENJET_RDIR,
                                 pt_bins=qgc.THEORY_PT_BINS,
                                 subplot_type=None):
    var_list = var_list or qgc.COMMON_VARS
    for ang in var_list:
        v_reco = "%s%s_vs_pt" % (reco_var_prepend, ang.var)
        v_gen = "%s%s_vs_pt" % (gen_var_prepend, ang.var)

        h2d_dyj_reco = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME),
                                "%s/%s" % (zpj_reco_dirname, v_reco))
        h2d_qcd_reco = grab_obj(os.path.join(root_dir, qgc.QCD_FILENAME),
                                "%s/%s" % (dj_reco_dirname, v_reco))
        h2d_dyj_gen = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME),
                               "%s/%s" % (zpj_gen_dirname, v_gen))
        h2d_qcd_gen = grab_obj(os.path.join(root_dir, qgc.QCD_FILENAME),
                               "%s/%s" % (dj_gen_dirname, v_gen))

        if "flavour" not in v_reco:
            h2d_dyj_reco_q = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME),
                                      "%s/q%s" % (zpj_reco_dirname, v_reco))
            h2d_qcd_reco_g = grab_obj(os.path.join(root_dir, qgc.QCD_FILENAME),
                                      "%s/g%s" % (dj_reco_dirname, v_reco))
            h2d_dyj_gen_q = grab_obj(os.path.join(root_dir, qgc.DY_FILENAME),
                                     "%s/q%s" % (zpj_gen_dirname, v_gen))
            h2d_qcd_gen_g = grab_obj(os.path.join(root_dir, qgc.QCD_FILENAME),
                                     "%s/g%s" % (dj_gen_dirname, v_gen))

        for (start_val, end_val) in pt_bins:
            lw = 2

            dy_reco_kwargs = dict(line_color=qgc.DY_COLOUR,
                                  fill_color=qgc.DY_COLOUR,
                                  label=qgc.DY_ZpJ_LABEL + " [RecoJet]",
                                  line_width=lw)
            qcd_reco_kwargs = dict(line_color=qgc.QCD_COLOUR,
                                   fill_color=qgc.QCD_COLOUR,
                                   label=qgc.QCD_Dijet_LABEL + " [RecoJet]",
                                   line_width=lw)

            dy_gen_kwargs = dict(line_color=qgc.DY_COLOUR,
                                 fill_color=qgc.DY_COLOUR,
                                 label=qgc.DY_ZpJ_LABEL + " [GenJet]",
                                 line_width=lw,
                                 line_style=2)
            qcd_gen_kwargs = dict(line_color=qgc.QCD_COLOUR,
                                  fill_color=qgc.QCD_COLOUR,
                                  label=qgc.QCD_Dijet_LABEL + " [GenJet]",
                                  line_width=lw,
                                  line_style=2)

            entries = [(qgg.get_projection_plot(h2d_dyj_reco, start_val,
                                                end_val), dy_reco_kwargs),
                       (qgg.get_projection_plot(h2d_qcd_reco, start_val,
                                                end_val), qcd_reco_kwargs),
                       (qgg.get_projection_plot(h2d_dyj_gen, start_val,
                                                end_val), dy_gen_kwargs),
                       (qgg.get_projection_plot(h2d_qcd_gen, start_val,
                                                end_val), qcd_gen_kwargs)]

            rebin = 2
            xlim = None
            ylim = None
            if "flavour" in v_reco:
                rebin = 1
                ylim = (0, 1)
            if "thrust" in v_reco:
                xlim = (0, 0.5)

            qgg.do_comparison_plot(
                entries,
                "%s/%s/%s_pt%dto%d.%s" %
                (root_dir, plot_dir, ang.var, start_val, end_val, OUTPUT_FMT),
                rebin=rebin,
                title="%d < p_{T}^{jet} < %d GeV" % (start_val, end_val),
                xtitle=ang.name + " (" + ang.lambda_str + ")",
                xlim=xlim,
                ylim=ylim,
                subplot_type=subplot_type)

            # Do flavour-tagged comparison
            if "flavour" in v_reco:
                continue

            dy_reco_kwargs['label'] = qgc.DY_ZpJ_QFLAV_LABEL + " [RecoJet]"
            qcd_reco_kwargs['label'] = qgc.QCD_Dijet_GFLAV_LABEL + " [RecoJet]"
            dy_gen_kwargs['label'] = qgc.DY_ZpJ_QFLAV_LABEL + " [GenJet]"
            qcd_gen_kwargs['label'] = qgc.QCD_Dijet_GFLAV_LABEL + " [GenJet]"

            entries = [(qgg.get_projection_plot(h2d_dyj_reco_q, start_val,
                                                end_val), dy_reco_kwargs),
                       (qgg.get_projection_plot(h2d_qcd_reco_g, start_val,
                                                end_val), qcd_reco_kwargs),
                       (qgg.get_projection_plot(h2d_dyj_gen_q, start_val,
                                                end_val), dy_gen_kwargs),
                       (qgg.get_projection_plot(h2d_qcd_gen_g, start_val,
                                                end_val), qcd_gen_kwargs)]

            qgg.do_comparison_plot(
                entries,
                "%s/%s/%s_flavMatched_pt%dto%d.%s" %
                (root_dir, plot_dir, ang.var, start_val, end_val, OUTPUT_FMT),
                rebin=rebin,
                title="%d < p_{T}^{jet} < %d GeV" % (start_val, end_val),
                xtitle=ang.name + " (" + ang.lambda_str + ")",
                xlim=xlim,
                ylim=ylim,
                subplot_type=subplot_type)