Exemple #1
0
    def test_to_per_sample_files(self):
        with tempfile.NamedTemporaryFile('r+', suffix='.fq',
                                         delete=False) as f:
            f.write(fqdata_variable_length)

        self.to_remove.append(f.name)

        with tempfile.NamedTemporaryFile('r+', suffix='.demux',
                                         delete=False) as demux_f:
            pass

        self.to_remove.append(demux_f.name)

        with h5py.File(demux_f.name, 'w') as demux:
            to_hdf5(f.name, demux)

        tmp_dir = tempfile.mkdtemp()
        self.to_remove.append(tmp_dir)
        path_builder = partial(os.path.join, tmp_dir)

        # Test to fastq
        to_per_sample_files(demux_f.name, out_dir=tmp_dir, n_jobs=1,
                            out_format='fastq')
        sample_a_path = path_builder("a.fastq")
        sample_b_path = path_builder("b.fastq")
        self.assertTrue(os.path.exists(sample_a_path))
        self.assertTrue(os.path.exists(sample_b_path))

        with open(sample_a_path, 'rb') as af:
            obs = af.read()
        self.assertEqual(
            obs, b'@a_0 orig_bc=abc new_bc=abc bc_diffs=0\nxyz\n+\nABC\n')

        with open(sample_b_path, 'rb') as bf:
            obs = bf.read()
        self.assertEqual(
            obs, b'@b_0 orig_bc=abw new_bc=wbc bc_diffs=4\nqwe\n+\nDFG\n'
                 b'@b_1 orig_bc=abw new_bc=wbc bc_diffs=4\nqwexx\n+\nDEF#G\n')

        # Test to fasta and parallel
        to_per_sample_files(demux_f.name, out_dir=tmp_dir, n_jobs=2,
                            out_format='fasta')

        sample_a_path = path_builder("a.fna")
        sample_b_path = path_builder("b.fna")
        self.assertTrue(os.path.exists(sample_a_path))
        self.assertTrue(os.path.exists(sample_b_path))

        with open(sample_a_path, 'rb') as af:
            obs = af.read()
        self.assertEqual(
            obs, b'>a_0 orig_bc=abc new_bc=abc bc_diffs=0\nxyz\n')

        with open(sample_b_path, 'rb') as bf:
            obs = bf.read()
        self.assertEqual(
            obs, b'>b_0 orig_bc=abw new_bc=wbc bc_diffs=4\nqwe\n'
                 b'>b_1 orig_bc=abw new_bc=wbc bc_diffs=4\nqwexx\n')
def deblur(qclient, job_id, parameters, out_dir):
    """Run deblur with the given parameters

    Parameters
    ----------
    qclient : qiita_client.QiitaClient
        The Qiita server client
    job_id : str
        The job id
    parameters : dict
        The parameter values to run deblur
    out_dir : str
        The path to the job's output directory

    Returns
    -------
    boolean, list, str
        The results of the job

    Notes
    -----
    The code will check if the artifact has a preprocessed_demux element, if
    not it will use the preprocessed_fastq. We prefer to work with the
    preprocessed_demux as running time will be greatly improved
    """
    out_dir = join(out_dir, 'deblur_out')
    # Step 1 get the rest of the information need to run deblur
    qclient.update_job_step(job_id, "Step 1 of 4: Collecting information")
    artifact_id = parameters['Demultiplexed sequences']
    # removing input from parameters so it's not part of the final command
    del parameters['Demultiplexed sequences']

    # Get the artifact filepath information
    artifact_info = qclient.get("/qiita_db/artifacts/%s/" % artifact_id)
    fps = artifact_info['files']

    # Step 2 generating command deblur
    if 'preprocessed_demux' in fps:
        qclient.update_job_step(job_id, "Step 2 of 4: Generating per sample "
                                "from demux (1/2)")

        if not exists(out_dir):
            mkdir(out_dir)
        split_out_dir = join(out_dir, 'split')
        if not exists(split_out_dir):
            mkdir(split_out_dir)

        # using the same number of parallel jobs as defined by the command
        n_jobs = int(parameters['Jobs to start'])
        # [0] cause there should be only 1 file
        to_per_sample_files(fps['preprocessed_demux'][0],
                            out_dir=split_out_dir, n_jobs=n_jobs)

        qclient.update_job_step(job_id, "Step 2 of 4: Generating per sample "
                                "from demux (2/2)")
        out_dir = join(out_dir, 'deblured')
        cmd = generate_deblur_workflow_commands([split_out_dir],
                                                out_dir, parameters)
    else:
        qclient.update_job_step(job_id, "Step 2 of 4: Generating deblur "
                                "command")
        cmd = generate_deblur_workflow_commands(fps['preprocessed_fastq'],
                                                out_dir, parameters)

    # Step 3 execute deblur
    qclient.update_job_step(job_id, "Step 3 of 4: Executing deblur job")
    std_out, std_err, return_value = system_call(cmd)
    if return_value != 0:
        error_msg = ("Error running deblur:\nStd out: %s\nStd err: %s"
                     % (std_out, std_err))
        return False, None, error_msg

    # Generating artifact
    pb = partial(join, out_dir)

    # Generate the filepaths
    final_biom = pb('all.biom')
    final_seqs = pb('all.seqs.fa')
    final_biom_hit = pb('reference-hit.biom')
    final_seqs_hit = pb('reference-hit.seqs.fa')

    if not exists(final_biom_hit):
        # Create an empty table. We need to send something to Qiita that is
        # a valid BIOM, so we are going to create an empty table
        t = Table([], [], [])
        with biom_open(final_biom_hit, 'w') as f:
            t.to_hdf5(f, 'qp-deblur generated')

    if not exists(final_seqs_hit):
        # Same as before, create an empty sequence file so we can send it
        with open(final_seqs_hit, 'w') as f:
            f.write("")

    # Step 4, communicate with archive to check and generate placements
    qclient.update_job_step(job_id, "Step 4 of 4 (1/4): Retrieving "
                            "observations information")
    features = list(load_table(final_biom_hit).ids(axis='observation'))

    fp_phylogeny = None
    if features:
        observations = qclient.post(
            "/qiita_db/archive/observations/", data={'job_id': job_id,
                                                     'features': features})
        novel_fragments = list(set(features) - set(observations.keys()))

        qclient.update_job_step(job_id, "Step 4 of 4 (2/4): Generating %d new "
                                "placements" % len(novel_fragments))

        # Once we support alternative reference phylogenies for SEPP in the
        # future, we need to translate the reference name here into
        # filepaths pointing to the correct reference alignment and
        # reference tree. If left 'None' the Greengenes 13.8 reference
        # shipped with the fragment-insertion conda package will be used.
        fp_reference_alignment = None
        fp_reference_phylogeny = None
        fp_reference_template = None
        fp_reference_rename = None
        if 'Reference phylogeny for SEPP' in parameters:
            if parameters['Reference phylogeny for SEPP'] == 'tiny':
                fp_reference_alignment = qp_deblur.get_data(join(
                    'sepp', 'reference_alignment_tiny.fasta'))
                fp_reference_phylogeny = qp_deblur.get_data(join(
                    'sepp', 'reference_phylogeny_tiny.nwk'))
                fp_reference_template = qp_deblur.get_data(join(
                    'sepp', 'tmpl_tiny_placement.json'))
                fp_reference_rename = qp_deblur.get_data(join(
                    'sepp', 'tmpl_tiny_rename-json.py'))
        try:
            new_placements = generate_sepp_placements(
                novel_fragments, out_dir, parameters['Threads per sample'],
                reference_alignment=fp_reference_alignment,
                reference_phylogeny=fp_reference_phylogeny)
        except ValueError as e:
            return False, None, str(e)

        qclient.update_job_step(job_id, "Step 4 of 4 (3/4): Archiving %d "
                                "new placements" % len(novel_fragments))
        # values needs to be json strings as well
        for fragment in new_placements.keys():
            new_placements[fragment] = json.dumps(new_placements[fragment])

        # fragments that get rejected by a SEPP run don't show up in
        # the placement file, however being rejected is a valuable
        # information and should be stored in the archive as well.
        # Thus, we avoid re-computation for rejected fragments in the
        # future.
        for fragment in novel_fragments:
            if fragment not in new_placements:
                new_placements[fragment] = ""
        if len(new_placements.keys()) > 0:
            qclient.patch(url="/qiita_db/archive/observations/", op="add",
                          path=job_id, value=json.dumps(new_placements))

        # retrieve all fragments and create actuall tree
        qclient.update_job_step(job_id, "Step 4 of 4 (4/4): Composing "
                                "phylogenetic insertion tree")
        placements = qclient.post(
            "/qiita_db/archive/observations/", data={'job_id': job_id,
                                                     'features': features})
        # remove fragments that have been rejected by SEPP, i.e. whoes
        # placement is the empty string and
        # convert all other placements from string to json
        placements = {frag: json.loads(placements[frag])
                      for frag, plc
                      in placements.items()
                      if plc != ''}
        try:
            fp_phylogeny = generate_insertion_trees(
                placements, out_dir,
                reference_template=fp_reference_template,
                reference_rename=fp_reference_rename)
        except ValueError as e:
            return False, None, str(e)
    else:
        new_placements = None

    ainfo = [ArtifactInfo('deblur final table', 'BIOM',
                          [(final_biom, 'biom'),
                           (final_seqs, 'preprocessed_fasta')])]
    if fp_phylogeny is not None:
        ainfo.append(ArtifactInfo('deblur reference hit table', 'BIOM',
                     [(final_biom_hit, 'biom'),
                      (final_seqs_hit, 'preprocessed_fasta'),
                      (fp_phylogeny, 'plain_text')], new_placements))

    return True, ainfo, ""
Exemple #3
0
def deblur(qclient, job_id, parameters, out_dir):
    """Run deblur with the given parameters

    Parameters
    ----------
    qclient : qiita_client.QiitaClient
        The Qiita server client
    job_id : str
        The job id
    parameters : dict
        The parameter values to run deblur
    out_dir : str
        The path to the job's output directory

    Returns
    -------
    boolean, list, str
        The results of the job

    Notes
    -----
    The code will check if the artifact has a preprocessed_demux element, if
    not it will use the preprocessed_fastq. We prefer to work with the
    preprocessed_demux as running time will be greatly improved
    """
    out_dir = join(out_dir, 'deblur_out')
    # Step 1 get the rest of the information need to run deblur
    qclient.update_job_step(job_id, "Step 1 of 3: Collecting information")
    artifact_id = parameters['seqs-fp']
    # removing input from parameters so it's not part of the final command
    del parameters['seqs-fp']

    # Get the artifact filepath information
    artifact_info = qclient.get("/qiita_db/artifacts/%s/" % artifact_id)
    fps = artifact_info['files']

    # Step 2 generating command deblur
    if 'preprocessed_demux' in fps:
        qclient.update_job_step(
            job_id, "Step 2 of 3: Generating per sample "
            "from demux (1/2)")

        if not exists(out_dir):
            mkdir(out_dir)
        split_out_dir = join(out_dir, 'split')
        if not exists(split_out_dir):
            mkdir(split_out_dir)

        # using the same number of parallel jobs as defined by the command
        n_jobs = parameters['jobs-to-start']
        # [0] cause there should be only 1 file
        to_per_sample_files(fps['preprocessed_demux'][0],
                            out_dir=split_out_dir,
                            n_jobs=n_jobs)

        qclient.update_job_step(
            job_id, "Step 2 of 3: Generating per sample "
            "from demux (2/2)")
        out_dir = join(out_dir, 'deblured')
        cmd = generate_deblur_workflow_commands([split_out_dir], out_dir,
                                                parameters)
    else:
        qclient.update_job_step(job_id, "Step 2 of 3: Generating deblur "
                                "command")
        cmd = generate_deblur_workflow_commands(fps['preprocessed_fastq'],
                                                out_dir, parameters)

    # Step 3 execute deblur
    qclient.update_job_step(job_id, "Step 3 of 3: Executing deblur job")
    std_out, std_err, return_value = system_call(cmd)
    if return_value != 0:
        error_msg = ("Error running deblur:\nStd out: %s\nStd err: %s" %
                     (std_out, std_err))
        return False, None, error_msg

    # Generating artifact
    pb = partial(join, out_dir)

    # Generate the filepaths
    final_biom = pb('final.biom')
    final_seqs = pb('final.seqs.fa')
    final_biom_16s = pb('final.only-16s.biom')
    final_seqs_na = pb('final.seqs.fa.no_artifacts')

    if not exists(final_biom_16s):
        # Create an empty table. We need to send something to Qiita that is
        # a valid BIOM, so we are going to create an empty table
        t = Table([], [], [])
        with biom_open(final_biom_16s, 'w') as f:
            t.to_hdf5(f, 'qp-deblur generated')

    if not exists(final_seqs_na):
        # Same as before, create an empty sequence file so we can send it
        with open(final_seqs_na, 'w') as f:
            f.write("")

    ainfo = [
        ArtifactInfo('deblur final table',
                     'BIOM', [(final_biom, 'biom'),
                              (final_seqs, 'preprocessed_fasta')]),
        ArtifactInfo('deblur 16S only table', 'BIOM',
                     [(final_biom_16s, 'biom'),
                      (final_seqs_na, 'preprocessed_fasta')])
    ]

    return True, ainfo, ""
Exemple #4
0
def persample(input, output, njobs):
    os.mkdir(output)
    to_per_sample_files(input, out_dir=output, n_jobs=njobs)